A logistic regression procedure was used to assess the impact of socioeconomic attributes on the best management practices (BMPs) adoption decision by Louisiana dairy farmers relative to cost-share and fixed incentive payments. Analysis of the steps in the BMP adoption decision process indicated visits between producers and the U.S. Department of Agriculture-Natural Resource Conservation Service significantly increase likelihood of BMP adoption. Producer willingness-to-pay results indicate that marginal increases in dairy BMP adoption and associated improvement in environmental quality require increased technical and financial assistance.
We examined the relationship between water quality and fish communities within two agricultural areas using a computer simulation model. Our analyses focused on a coolwater stream, Wells Creek in southeastern Minnesota, and a warmwater stream, the Chippewa River in western Minnesota. We used the Agricultural Drainage and Pesticide Transport (ADAPT) model in relation to land use to calculate instream suspended sediment concentrations using estimates of sediment delivery, runoff, baseflow and streambank erosion, and quantified the effects of suspended sediment exposure on fish communities. We predicted the effects of agricultural practices on stream fish communities under several possible land use scenarios, with reference to current conditions. Land use changes led to reductions in sediment loading of up to 84% in Wells Creek and 49% in the Chippewa River. The reduction in sediment loading across scenarios may be directly related to a reduction in runoff by about 35% in both study areas. We found a 98% decrease in "lethal" concentrations of suspended sediment on fish in Wells Creek with an increase in conservation tillage, riparian buffers, and permanent vegetative cover. However, the effects of suspended sediment did not significantly decrease in the Chippewa River. This difference between study areas was likely due to differences in tolerance to suspended sediment between coolwater and warmwater fish communities and differences in topography, runoff and bank erosion between the two streams.
For policy makers, regulators and natural resource managers, the resources necessary for original empirical resource valuations are often unavailable. A common alternative to original valuation studies is the practice of benefit transfer—the use of an empirical value estimate or estimates from a previous study or studies for application in a similar context. In order to reduce the error inherent in applying values from one parcel of land to another, researchers commonly use meta-analysis, or the “study of studies”, to provide a more thorough and statistically valid value estimate for use in a benefit transfer. In the practice of benefit transfer, much emphasis has been placed on improving the validity of values for transfer, but fewer studies have focused on the appropriate application of the established estimates. In this article, several often disregarded concerns that should be addressed when practicing benefit transfer are identified. A special focus is placed on spatial considerations and the recent progress that has been made to incorporate spatial trends. Geographic information systems (GIS) are advocated as a useful tool for incorporating the spatial aspects of benefit transfer. Consensuses and trends in the literature are acknowledged, and areas of potential improvement are highlighted
The Agricultural Drainage and Pesticide Transport model was used to examine the relationship between fish and suspended sediment in the context of a proposed total maximum daily load (TMDL) in two agricultural watersheds in Minnesota. During a 50-year simulation, Wells Creek, a third-order cold water stream, had an estimated 1,164 events (i.e., one or more consecutive days of estimated sediment loading) and the Chippewa River, a fourthorder warm water stream, had 906 events of measurable suspended sediment. Sublethal thresholds were exceeded for 970 events and lethal levels for 194 events for brown trout in Wells Creek, whereas adult nonsalmonids would have experienced sublethal levels for 923 events and lethal levels for 241 events. Sublethal levels were exceeded for 756 events and lethal thresholds were exceeded for 150 events in the Chippewa River. Nonsalmonids would have experienced 15 events of mortality between 0 and 20 percent in Wells Creek. In the Chippewa River, there were 35 events of mortality between 0 and 20 percent and one event in which mortality could have exceeded 20 percent. The Minnesota Pollution Control Agency has proposed listing stream reaches as being impaired for turbidity at 25 NTU, which is approximately 46 mg suspended sediment/l. We estimated that 46 mg/l would be exceeded approximately 30 days in a year (d/yr) in both systems. A TMDL of 46 mg SS/l may be too high to ensure that stream fishes are not negatively affected by suspended sediment. We recommend that an indicator incorporating the duration of exposure be applied. (KEY TERMS: agricultural watersheds; duration of exposure; fish assemblage; suspended sediment; TMDL.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.