Background Few studies have examined stress reactivity and its relationship to major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) among maltreated youth. We examined differences between maltreated and control participants in heart rate and cortisol resting and reactivity levels in response to a psychosocial stressor. Methods We recruited 67 female youths aged 12 to 16 with no prior history of depression from child protection agencies and a control group of 25 youths matched on age and postal code. Child maltreatment was measured with two self-report instruments. Psychiatric status was assessed using the Schedule for Affective Disorders and Schizophrenia for School-Aged Children. Results Piecewise multilevel growth curve analysis was used to model group differences in resting and reactivity cortisol levels and heart rate in response to the Trier Social Stress Test (TSST). During the resting period, both the maltreated and control groups showed a similar decline in levels of cortisol. During the reactivity phase, youth in the control group showed an increase in cortisol levels following the TSST and a gradual flattening over time; maltreated youth exhibited an attenuated response. This blunted reactivity was not associated with current symptoms of MDD or PTSD. There were no group differences in resting and reactivity levels of heart rate. Conclusions These findings provide further support for hypothalamic-pituitary-adrenal axis dysregulation among maltreated youth. Since the ability to respond to acute stressors by raising cortisol is important for health, these findings may assist in understanding the vulnerability of maltreated youth to experience physical and mental health problems.
SummaryBackgroundKCNJ11 mutations cause permanent neonatal diabetes through pancreatic ATP-sensitive potassium channel activation. 90% of patients successfully transfer from insulin to oral sulfonylureas with excellent initial glycaemic control; however, whether this control is maintained in the long term is unclear. Sulfonylurea failure is seen in about 44% of people with type 2 diabetes after 5 years of treatment. Therefore, we did a 10-year multicentre follow-up study of a large international cohort of patients with KCNJ11 permanent neonatal diabetes to address the key questions relating to long-term efficacy and safety of sulfonylureas in these patients.MethodsIn this multicentre, international cohort study, all patients diagnosed with KCNJ11 permanent neonatal diabetes at five laboratories in Exeter (UK), Rome (Italy), Bergen (Norway), Paris (France), and Krakow (Poland), who transferred from insulin to oral sulfonylureas before Nov 30, 2006, were eligible for inclusion. Clinicians collected clinical characteristics and annual data relating to glycaemic control, sulfonylurea dose, severe hypoglycaemia, side-effects, diabetes complications, and growth. The main outcomes of interest were sulfonylurea failure, defined as permanent reintroduction of daily insulin, and metabolic control, specifically HbA1c and sulfonylurea dose. Neurological features associated with KCNJ11 permanent neonatal diabetes were also assessed. This study is registered with ClinicalTrials.gov, number NCT02624817.Findings90 patients were identified as being eligible for inclusion and 81 were enrolled in the study and provided long-term (>5·5 years cut-off) outcome data. Median follow-up duration for the whole cohort was 10·2 years (IQR 9·3–10·8). At most recent follow-up (between Dec 1, 2012, and Oct 4, 2016), 75 (93%) of 81 participants remained on sulfonylurea therapy alone. Excellent glycaemic control was maintained for patients for whom we had paired data on HbA1c and sulfonylurea at all time points (ie, pre-transfer [for HbA1c], year 1, and most recent follow-up; n=64)—median HbA1c was 8·1% (IQR 7·2–9·2; 65·0 mmol/mol [55·2–77·1]) before transfer to sulfonylureas, 5·9% (5·4–6·5; 41·0 mmol/mol [35·5–47·5]; p<0·0001 vs pre-transfer) at 1 year, and 6·4% (5·9–7·3; 46·4 mmol/mol [41·0–56·3]; p<0·0001 vs year 1) at most recent follow-up (median 10·3 years [IQR 9·2–10·9]). In the same patients, median sulfonylurea dose at 1 year was 0·30 mg/kg per day (0·14–0·53) and at most recent follow-up visit was 0·23 mg/kg per day (0·12–0·41; p=0·03). No reports of severe hypoglycaemia were recorded in 809 patient-years of follow-up for the whole cohort (n=81). 11 (14%) patients reported mild, transient side-effects, but did not need to stop sulfonylurea therapy. Seven (9%) patients had microvascular complications; these patients had been taking insulin longer than those without complications (median age at transfer to sulfonylureas 20·5 years [IQR 10·5–24·0] vs 4·1 years [1·3–10·2]; p=0·0005). Initial improvement was noted following transfer to sulfo...
Rabbit platelets were labelled with [3H]glycerol and incubated with or without phorbol 12-myristate 13-acetate (PMA). Membranes were then isolated and assayed for phospholipase D (PLD) activity by monitoring [3H]phosphatidylethanol formation in the presence of 300 mM-ethanol. At a [Ca2+free] of 1 microM, PLD activity was detected in control membranes, but was 5.4 +/- 0.8-fold (mean +/- S.E.M.) greater in membranes from PMA-treated platelets. Under the same conditions, 10 microM-guanosine 5′-[gamma-thio]triphosphate (GTP[S]) stimulated PLD by 18 +/- 3-fold in control membranes, whereas PMA treatment and GTP[S] interacted synergistically to increase PLD activity by 62 +/- 12-fold. GTP[S]-stimulated PLD activity was observed in the absence of Ca2+, but was increased by 1 microM-Ca2+ (3.5 +/- 0.2-fold and 1.8 +/- 0.1-fold in membranes from control and PMA-treated platelets respectively). GTP exerted effects almost as great as those of GTP[S], but 20-30-fold higher concentrations were required. Guanosine 5′-[beta-thio]diphosphate inhibited the effects of GTP[S] or GTP, suggesting a role for a GTP-binding protein in activation of PLD. Thrombin (2 units/ml) stimulated the PLD activity of platelet membranes only very weakly and in a GTP-independent manner. The actions of PMA and analogues on PLD activity correlated with their ability to stimulate protein kinase C in intact platelets. Staurosporine, a potent protein kinase inhibitor, had both inhibitory and, at higher concentrations, stimulatory effects on the activation of PLD by PMA. The results suggest that PMA not only stimulates PLD via activation of protein kinase C but can also activate the enzyme by a phosphorylation-independent mechanism in the presence of staurosporine. However, under physiological conditions, full activation of platelet PLD may require the interplay of protein kinase C, increased Ca2+ and a GTP-binding protein, and may occur as a secondary effect of the activation of phospholipase C.
Abstract— It was shown that the cationic fluorescence probe rhodamine 123 accumulates in mitochondria of murine L929 fibroblasts and Chinese hamster ovary Kl epithelial cells due to the driving force of both plasma membrane and mitochondrial membrane potentials. Photodynamic treatment of L929 cells with hematoporphyrin derivative resulted in an increased uptake of rhodamine 123 and a diminished uptake of 1,1,3,3,3′,3′‐hexamethylindocarbocyanine iodide. This indicates a considerably increased mitochondrial membrane potential, which most likely is the result of a direct or secondary inhibition of the ATP‐synthetase, and a decreased plasma membrane potential. The oxygen consumption rate and the ATP level decreased due to photodynamic treatment. Post‐incubation of L929 cells subsequent to photodynamic treatment revealed that the uptake of rhodamine 123. the ATP content and the oxygen consumption rate were restored. For all parameters similar results were obtained with CHO‐K1 cells, with the exception that during post‐incubation the intracellular ATP content remained at the level reached after illumination. These results indicate that photodynamically induced disturbance of mitochondrial functions and the ATP level are not crucial for the loss of clonogenicity of L929 cells. In CHO‐K1 cells however, the continuously lowered ATP level may have detrimental consequences for cell survival. The photodynamic stimulation of the rhodamine 123 uptake may be a rather general phenomenon. Because rhodamine 123 exhibits a much higher toxicity towards carcinoma cells than towards other cells, a synergistic interaction between this drug and photodynamic therapy (PDT) may be anticipated, if PDT also stimulates mitochondrial rhodamine 123 accumulation in carcinoma in vivo.
Porcine alpha-granules, prepared by a modification of pre-existing methods, were found to be essentially homogeneous by transmission electron microscopy. Freeze-fractured samples of isolated granules revealed numerous intramembranous particles on the EF (exoplasmic fracture) surface and to a lesser extent on the PF (protoplasmic fracture) surface whereas the PS (protoplasmic) surface was relatively smooth. The granules appear to be sealed, as evidenced by: a) the retention of their electron dense core material; b) the inability of impermeant labels to react with the granule contents, and c) the finding that the intragranular proteins are refractory to mild hydrolysis by externally added proteases. Membranes were isolated by alkali extraction of the granules and used for biochemical characterization. Approximately 87% of the protein, but only insignificant amounts of phospholipid were removed by this procedure, which yielded membrane vesicles devoid of the dense core. The membranes contain one major and several minor polypeptides of molecular weights ranging from 28,000 to 230,000, as determined by polyacrylamide gel electrophoresis. The major polypeptide contains carbohydrate residues. The exposure of specific proteins on the cytoplasmic surface of the granule membrane was determined by a combination of surface-specific labeling and proteolysis of intact granules, followed by membrane isolation and analysis. In sealed granules, only a limited number of bands are modified by the reagents whereas most of them are affected following granule lysis, indicating asymmetry in their transmembrane disposition. The fraction eluted by alkali extraction was also analyzed and found to contain nine major polypeptides of molecular weights ranging from 230,000 to 43,000. These are compared to the weights of the macromolecules believed to be secreted from alpha-granules, as determined by radioimmunological techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.