To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays. As such in this work, we combine wavelength and mode-division multiplexed transmission over a 4.45 km low-DMGD 6-LP-mode fiber by employing low-loss all-fiber 10-port photonic lanterns to couple light in and out of the fiber. Hence, a minimum DMGD of 0.2 ns (maximum 0.357 ns) is measured after 4.45 km. Instrumental to the multi-mode transmission system is the employed time-domain-SDM receiver, allowing 10 spatial mode channels (over both polarizations) to be captured using only 3 coherent receivers and real-time oscilloscopes in comparison with 10 for conventional methods. The spatial channels were unraveled using 20 × 20 multiple-input multiple-output digital signal processing. By employing a novel round-robin encoding technique, stable performance over a long measurement period demonstrates the feasibility of 10x increase in single-core multi-mode transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.