When Pseudomonas C12B is grown on nutrient broth to the stationary phase, cell extracts contain two secondary alkylsulphatases (S1 and S2) active towards potassium decan-5-yl sulphate but not towards potassium pentan-3-yl sulphate and one primary alkylsulphatase (P1) active towards sodium dodecan-1-yl sulphate (sodium dodecyl sulphate). When 10mm-sodium hexan-1-yl sulphate is included in the nutrient broth an additional primary alkylsulphatase (P2) is produced. The S1, S2, P1 and P2 enzymes are also present in extracts of cells grown on broth containing the commercial detergent Oronite, together with an additional secondary alkylsulphatase (S3) active towards pentan-3-yl sulphate as well as decan-5-yl sulphate. The P2 primary alkylsulphatase can be induced by a number of primary and secondary alkyl sulphate esters but the induction of the S3 enzyme appears to be a more specific and complex process. Studies on the ability of different fractions separated from Oronite to act as inducers suggest that the combination of a long-chain secondary alkyl sulphate(s) and a long-chain secondary alcohol(s) is responsible for the appearance of the S3 enzyme. Potassium hexadecan-2-yl sulphate or potassium tetradecan-2-yl sulphate, in combination with either hexadecan-2-ol or tetradecan-2-ol, can serve as inducers for the enzyme. Some characteristics of these specific inducer systems have been elucidated.
Three educational interventions were simulated in a system dynamics model of the medical use, trafficking, and nonmedical use of pharmaceutical opioids. The study relied on secondary data obtained in the literature for the period of 1995 to 2008 as well as expert panel recommendations regarding model parameters and structure. The behavior of the resulting systems-level model was tested for fit against reference behavior data. After the base model was tested, logic to represent three educational interventions was added and the impact of each intervention on simulated overdose deaths was evaluated over a 7-year evaluation period, 2008 to 2015. Principal findings were that a prescriber education intervention not only reduced total overdose deaths in the model but also reduced the total number of persons who receive opioid analgesic therapy, medical user education not only reduced overdose deaths among medical users but also resulted in increased deaths from nonmedical use, and a “popularity” intervention sharply reduced overdose deaths among nonmedical users while having no effect on medical use. System dynamics modeling shows promise for evaluating potential interventions to ameliorate the adverse outcomes associated with the complex system surrounding the use of opioid analgesics to treat pain.
The P2 primary alkylsulphohydrolase of the soil bacterium Pseudomonas C12B was purified to homogeneity (200-250-fold) by column chromatography on DEAE-cellulose, Sephadex G-100 and butyl-agarose. The intact protein is a dimer with a mol. wt. of 160 000. Activity towards primary alkyl sulphate esters was maximal at pH 8.3, varied little in the range pH 7.8-8.7, but decreased sharply at higher pH. For a homologous series of primary alkyl sulphate substrates (C6-C12), logKm decreased linearly with increasing chain length, corresponding to a contribution to the free energy of association between enzyme and substrate of -2.5kJ/mol for each additional CH2 group in the alkyl chain. logKi for the competitive inhibition by secondary alkyl 2-sulphate esters followed a similar pattern (-2.4kJ/mol for each additional CH2 group) except that only n-1 carbon atoms effectively participate in hydrophobic bonding, implying that the C-1 methyl group is not involved. logKi values for inhibition primary alkanesulphonates also depended linearly on chain length but with a diminished gradient, indicating a free-energy increment of -1.2kJ/mol per additional CH2 group. The collective results showed the presence of a hydrophobic site on the enzyme capable of accomodating an alkyl chain of considerable length. Cationic structures (in the form of arginine, lysine or histidine), whose presence might be expected for binding the anionic sulphate group, were not detectable at the active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.