The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern. Multi-year droughts during the instrumental period and decadal-length droughts of the past two millennia were shorter and climatically different from the future permanent, 'dust-bowl-like' megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C(4) plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ∼2 °C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4-6 °C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase.
The Chuar Group (~1600 m thick) preserves a record of extensional tectonism, ocean-chemistry fluctuations, and biological diversification during the late Neoproterozoic Era. An ash layer from the top of the section has a U-Pb zircon age of 742 ± 6 Ma. The Chuar Group was deposited at low latitudes during extension on the north-trending Butte fault system and is inferred to record rifting during the breakup of Rodinia. Shallow-marine deposition is documented by tide-and wave-generated sedimentary structures, facies associations, and fossils. C isotopes in organic carbon show large stratigraphic variations, apparently recording incipient stages of the marked C isotopic fluctuations that characterize later Neoproterozoic time. Upper Chuar rocks preserve a rich biota that includes not only cyanobacteria and algae, but also heterotrophic protists that document increased food web complexity in Neoproterozoic ecosystems. The Chuar Group thus provides a well-dated, high-resolution record of early events in the sequence of linked tectonic, biogeochemical, environmental, and biological changes that collectively ushered in the Phanerozoic Eon.
The mid-Pleistocene transition is a time interval between ca. 1.2 and 0.7 Ma during which a shift occurred from ~41 k.y. glacial-interglacial cycles to ~100 k.y. cycles. Although the mid-Pleistocene transition has been well documented in global marine records, its effects in continental environments, including North America, are incompletely understood owing to the paucity of terrestrial sediment records spanning the entire Quaternary. A notable exception is the ca. 1.4 Ma and younger Blackwater Draw Formation, an extensive eolian sequence on the Southern High Plains of the United States. Intervals of the Blackwater Draw Formation section that are inferred to span the mid-Pleistocene transition can be divided into pre–, syn–, and post–mid-Pleistocene transition parts. Weathering profiles in the pre–mid-Pleistocene transition section are dominated by weakly developed soils formed in arid environments, as evidenced by well-expressed pedogenic carbonate horizons, lack of clay formation during hydrolysis, and magnetically soft, coarse-grained magnetite/ maghemite populations. Conversely, the syn– and post–mid-Pleistocene transition intervals demonstrate an increase in weathering intensity by an abrupt increase in clay content formed in part by hydrolysis of feldspars, soil profiles that demonstrate leaching and illuviation, and a fining-upward grain size of the magnetite/maghemite population. Sedimentologic, geochemical, and rock-magnetic data are consistent with a southern and coarser sediment source derived from the Pecos River drainage prior to the mid-Pleistocene transition, followed by a mixture of northern and southern sources during and after the mid-Pleistocene transition. Overall, our results indicate that pre–mid-Pleistocene transition conditions on the Southern High Plains were arid with wind energy sufficient to mobilize sand sheets out of the Pecos River and deposit them on the plateau. The syn– and post–mid-Pleistocene transition environments reflect somewhat wetter conditions and potentially an influx of silt from the north, in addition to continued sand derived from the Pecos River valley. The wetter conditions and silt influx may have resulted from longer-lived and more robust glacial activity in the Northern Hemisphere that characterized the post–mid-Pleistocene transition Earth system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.