Human obesity has an inherited component, but in contrast to rodent obesity, precise genetic defects have yet to be defined. A mutation of carboxypeptidase E (CPE), an enzyme active in the processing and sorting of prohormones, causes obesity in the fat/fat mouse. We have previously described a women with extreme childhood obesity (Fig. 1), abnormal glucose homeostasis, hypogonadotrophic hypogonadism, hypocortisolism and elevated plasma proinsulin and pro-opiomelanocortin (POMC) concentrations but a very low insulin level, suggestive of a defective prohormone processing by the endopeptidase, prohormone convertase 1 (PC1; ref. 4). We now report this proband to be a compound heterozygote for mutations in PC1. Gly-->Arg483 prevents processing of proPC1 and leads to its retention in the endoplasmic reticulum (ER). A-->C+4 of the intro-5 donor splice site causes skipping of exon 5 leading to loss of 26 residues, a frameshift and creation of a premature stop codon within the catalytic domain. PC1 acts proximally to CPE in the pathway of post-translational processing of prohormones and neuropeptides. In view of the similarity between the proband and the fat/fat mouse phenotype, we infer that molecular defects in prohormone conversion may represent a generic mechanism for obesity, common to humans and rodents.
Zinc co-crystallizes with insulin in dense core secretory granules, but its role in insulin biosynthesis, storage and secretion is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8 ؊/؊ ) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and preserved glucose-induced insulin release. Ultrastructurally, mature dense core insulin granules were rare in ZnT8 ؊/؊ beta cells and were replaced by immature, pale insulin ''progranules,'' which were larger than in ZnT8 ؉/؉ islets. When mice were fed a control diet, glucose tolerance and insulin sensitivity were normal. However, after high-fat diet feeding, the ZnT8 ؊/؊ mice became glucose intolerant or diabetic, and islets became less responsive to glucose. Our data show that the ZnT8 transporter is essential for the formation of insulin crystals in beta cells, contributing to the packaging efficiency of stored insulin. Interaction between the ZnT8 ؊/؊ genotype and diet to induce diabetes is a model for further studies of the mechanism of disease of human ZNT8 gene mutations.dense core granule ͉ diabetes ͉ zinc
Mutations in PCSK1 cause monogenic obesity. To assess the contribution of PCSK1 to polygenic obesity risk, we genotyped tag SNPs in a total of 13,659 individuals of European ancestry from eight independent case-control or family-based cohorts. The nonsynonymous variants rs6232, encoding N221D, and rs6234-rs6235, encoding the Q665E-S690T pair, were consistently associated with obesity in adults and children (P = 7.27 x 10(-8) and P = 2.31 x 10(-12), respectively). Functional analysis showed a significant impairment of the N221D-mutant PC1/3 protein catalytic activity.
Proprotein convertases (PC) are a family of proteases that cleave target proproteins at basic aminoacids, generating mature, biologically active polypeptides. Furin, the founding member of this family, is reported to have a number of potential substrates. However, germline deletion of fur is embryonically lethal 1 , and therefore the cell-type specific functions of furin remain poorly understood. Although furin is one of the predominant PC family members expressed by T cells, is induced by T cell activation and is a direct target of Stat family transcription factors 2 , the function of furin in T cells is also not clear. Herein, we show that conditional deletion of furin in T cells results in loss of peripheral tolerance characterized by activated T cells that overproduce both Th1 and Th2 type cytokines, circulating autoantibodies and development of inflammatory bowel disease. PCs are reportedly involved in the processing of several key immunoregulatory cytokines and we found that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.