A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection.
Recently a method (RASCAL) for determining graph similarity using a maximum common edge subgraph algorithm has been proposed which has proven to be very efficient when used to calculate the relative similarity of chemical structures represented as graphs. This paper describes heuristics which simplify a RASCAL similarity calculation by taking advantage of certain properties specific to chemical graph representations of molecular structure. These heuristics are shown experimentally to increase the efficiency of the algorithm, especially at more distant values of chemical graph similarity.
The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks.
This paper reports an evaluation of both graph-based and fingerprint-based measures of structural similarity, when used for virtual screening of sets of 2D molecules drawn from the MDDR and ID Alert databases. The graph-based measures employ a new maximum common edge subgraph isomorphism algorithm, called RASCAL, with several similarity coefficients described previously for quantifying the similarity between pairs of graphs. The effectiveness of these graph-based searches is compared with that resulting from similarity searches using BCI, Daylight and Unity 2D fingerprints. Our results suggest that graph-based approaches provide an effective complement to existing fingerprint-based approaches to virtual screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.