Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.cytoskeleton | calcium-signaling | carbohydrate-active enzymes | stress tolerance | vitamin B 12T he red algae are one of the founding groups of photosynthetic eukaryotes (Archaeplastida) and among the few multicellular lineages within Eukarya. A red algal plastid, acquired through secondary endosymbiosis, supports carbon fixation, fatty acid synthesis, and other metabolic needs in many other algal groups in ways that are consequential. For example, diatoms and haptophytes have strong biogeochemical effects; apicomplexans cause human disease (e.g., malaria); and dinoflagellates include both coral symbionts and toxin-producing "red tides" (1). The evolutionary processes that produced the Archaeplastida and secondary algal lineages remain under investigation (2-5), but it is clear that both nuclear and plastid genes from the ancestral red algae have contributed dramatically to broader eukaryotic evolution and diversity. Consequently, the imprint of red algal metabolism on the Earth's climate system, aquatic foodwebs, and
The origin of the red algae has remained an enigma. Historically the Rhodophyta were classified first as plants and later as the most ancient eukaryotic organisms. Recent molecular studies have indicated similarities between red and green plastids, which suggest that there was a single endosymbiotic origin for these organelles in a common ancestor of the rhodophytes and green plants. Previous efforts to confirm or reject this effort by analyses of nuclear DNA have been inconclusive; thus, additional molecular markers are needed to establish the relationship between the host cell lineages, independent of the evolutionary history of their plastids. To furnish such a data set we have sequenced the largest subunit of RNA polymerase II from two red algae, a green alga and a relatively derived amoeboid protist. Phylogenetic analyses provide strong statistical support for an early evolutionary emergence of the Rhodophyta that preceded the origin of the line that led to plants, animals, and fungi. These data, which are congruent with results from extensive analyses of nuclear rDNA, argue for a reexamination of current models of plastid evolution.
Objective-Based on the reported association between cytokines with depression and suicide, and evidence of increased markers of inflammation in the brain of suicide victims, the present study examined the expression of cytokines in the orbitofrontal cortex of suicide victims.Method-In a postmortem sample obtained from the Brodman area 11 of suicides (n = 34) and controls (n = 17), real-time RT-PCR was used to compare the expression of mRNA species for tumor necrosis factor-a (TNF-α), interleukin (IL)-1β, 4, 5, 6, and 13.Results-Increased expression of IL-4 was found in women suicide victims and IL-13 in men suicide victims. Elevated but not significant cytokine expression was also observed for TNF-α in women suicide victims. • Limited information on psychiatric diagnoses and blood toxicology in the suicide group. Conclusion-To NIH Public Access
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.