Mosquitoes of both sexes feed on plants to obtain sugar. Nocturnal species probably locate the plants primarily by their volatile semiochemicals that also form the basis for the mosquitoes' innate plant-species preferences. To evaluate these olfactory preferences quantitatively, we used a two-choice wind-tunnel olfactometer to measure the upwind orientation of Anopheles gambiae Giles, an important vector of malaria in equatorial Africa, toward odor plumes produced by nine plant species common where this mosquito occurs. These plants are reported to induce feeding behaviors in An. gambiae and to produce floral or extrafloral nectar. Results presented here demonstrated that the volatiles of S. didymobotrya, P. hysterophorus, S. occidentalis, and L. camara, in descending order of numbers of mosquitoes responding, were all attractive, compared to a control plant species, whereas D. stramonium, R. communis, S. bicapsularis, T. stans, and T. diversifolia were not. As expected, chromatographic analysis of the headspace of attractive plants whose volatiles were captured by stir-bar sorptive extraction revealed a wide range of compounds, primarily terpenoids. Once their bioactivity and attractiveness for An. gambiae, alone and in blends, has been firmly established, some of these semiochemicals may have applications in population sampling and control.
Mosquitoes derive energy from plant sugar, thereby promoting survival and reproduction. Its survival value to females plays a key role in the vectorial capacity of mosquito populations. Previous olfactometry assays of responsiveness demonstrated that Senna didymobotrya Fresenius, Parthenium hysterophorus, L. Senna occidentalis, (L) and Lantana camara L were among the most attractive plants for the Mbita strain of Anopheles gambiae s.s. Giles in eastern Africa. Here, we provide experimental evidence that three of these four species also provide varying but substantial amounts of sugar for mosquito survival, whereas a fourth does not. Rank order of survival of both sexes of mosquitoes housed with these plants was as follows: S. didymobotrya was highest, followed by S. occidentalis and L. camara, whereas survival on P. hysterophorus was only slightly better than on only water. A positive control group, housed with 10% sucrose, survived well but fell significantly short of those with S. didymobotrya A causal connection between survival and sugar availability was established by exposing mosquitoes to plants overnight, and then testing them for the presence and amount of undigested fructose. Fructose positivity was most frequent in those exposed to L. camara, whereas greatest amounts of fructose were obtained from S. occidentalis and S. didymobotrya Parthenium hysterophorus scored lowest in both categories. We conclude that attractiveness and sugar availability are often, but not always, concordant. It remains unclear why P. hysterophorus should be attractive if it offers little sugar and does not prolong survival. Furthermore, the cause behind the superior survival benefit of S. didymobotrya, compared with 10% sucrose, is unknown.
Over the past 3 years, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread through human populations in several waves, resulting in a global health crisis. In response, genomic surveillance efforts have proliferated in the hopes of tracking and anticipating the evolution of this virus, resulting in millions of patient isolates now being available in public databases. Yet, while there is a tremendous focus on identifying newly emerging adaptive viral variants, this quantification is far from trivial. Specifically, multiple co-occurring and interacting evolutionary processes are constantly in operation and must be jointly considered and modeled in order to perform accurate inference. We here outline critical individual components of such an evolutionary baseline model—mutation rates, recombination rates, the distribution of fitness effects, infection dynamics, and compartmentalization—and describe the current state of knowledge pertaining to the related parameters of each in SARS-CoV-2. We close with a series of recommendations for future clinical sampling, model construction, and statistical analysis.
Aggregations are widespread across the animal kingdom, yet the underlying proximate and ultimate causes are still largely unknown. An ideal system to investigate this simple, social behavior is the pine sawfly genus Neodiprion, which is experimentally tractable and exhibits interspecific variation in larval gregariousness. To assess intraspecific variation in this trait, we characterized aggregative tendency within a single widespread species, the redheaded pine sawfly (N. lecontei). To do so, we developed a quantitative assay in which we measured interindividual distances over a 90‐min video. This assay revealed minimal behavioral differences: (1) between early‐feeding and late‐feeding larval instars, (2) among larvae derived from different latitudes, and (3) between groups composed of kin and those composed of nonkin. Together, these results suggest that, during the larval feeding period, the benefits individuals derive from aggregating outweigh the costs and that this cost‐to‐benefit ratio does not vary dramatically across space (geography) or ontogeny (developmental stage). In contrast to the feeding larvae, our assay revealed a striking reduction in gregariousness following the final larval molt in N. lecontei. We also found some intriguing interspecific variation: While N. lecontei and N. maurus feeding larvae exhibit significant aggregative tendencies, feeding N. compar larvae do not aggregate at all. These results set the stage for future work investigating the proximate and ultimate mechanisms underlying developmental and interspecific variation in larval gregariousness across Neodiprion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.