Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.
Over the past century, the environment of the Gulf of Mexico has been significantly altered and impaired by extensive human activities. A national commitment to restore the Gulf was finally initiated in response to the unprecedented Deepwater Horizon oil spill in 2010. Consequently, there is a critical need for an assessment framework and associated set of indicators that can characterize the health and sustainability of an ecosystem having the scale and complexity of the Gulf. The assessment framework presented here was developed as an integration of previous ecological risk– and environmental management–based frameworks for assessing ecosystem health. It was designed to identify the natural and anthropogenic drivers, pressures, and stressors impinging on ecosystems and ecosystem services, and the ecological conditions that result, manifested as effects on valued ecosystem components. Four types of societal and ecological responses are identified: reduction of pressures and stressors, remediation of existing stressors, active ecosystem restoration, and natural ecological recovery. From this conceptual framework are derived the specific indicators to characterize ecological condition and progress toward achieving defined ecological health and sustainability goals. Additionally, the framework incorporates a hierarchical structure to communicate results to a diversity of audiences, from research scientists to environmental managers and decision makers, with the level of detail or aggregation appropriate for each targeted audience. Two proof‐of‐concept studies were conducted to test this integrated assessment and decision framework, a prototype Texas Coastal Ecosystems Report Card, and a pilot study on enhancing rookery islands in the Mission‐Aransas Reserve, Texas, USA. This Drivers–Pressures–Stressors–Condition–Responses (DPSCR4) conceptual framework is a comprehensive conceptual model of the coupled human–ecological system. Much like its predecessor, the ecological risk assessment framework, the DPSCR4 conceptual framework can be tailored to different scales of complexity, different ecosystem types with different stress regimes, and different environmental settings. Integr Environ Assess Manag 2019;15:544–564. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
We analyzed the results of the first comprehensive, systematic, fishery-independent survey of Gulf of Mexico (GoM) continental shelves using data collected from demersal longline sampling off the United States, Mexico, and Cuba. In total, 166 species were sampled from 343 longline sets during 2011-2017, which deployed 153,146 baited hooks, catching 14,938 fish. Abundance, species richness, and Shannon-Wiener diversity indices by station were highest in mid-shelf depths (~100 m), declining by about half in deeper waters. Six spatial assemblages were identified by testing the results of cluster analysis using similarity profile analysis and then plotting the geographic location of identified station clusters. A high degree of depth-related and horizontal zonation was evident for demersal fish species. Multispecies CPUE (number per 1,000 hookhours) was highest off the north-central (NC) and northwestern (NW) GoM and lower on the West Florida Shelf (WFS), Cuba (CUB), Yucatan Peninsula (YP), and southwestern (SW) GoM. Snappers and groupers were most abundant in the WFS and CUB, while elasmobranchs were the dominant taxa in the NC and NW GoM. Pelagic species were relatively rare everywhere (owing to the use of demersal longline gear), but were most dense off CUB. Species richness was highest in the NC and WFS subareas and lowest in the NW and CUB. Slopes of multispecies size spectra, which integrated mortality, recruitment, growth, and species interactions among size-groups, were shallowest in the NW and NC GoM and steepest off the WFS and YP. These results provide a basis for evaluating the relative resiliency potential of species assemblages across the continental shelves of the GoM, and thus for identifying subareas that are most vulnerable to acute and chronic perturbations from cumulative effects of fishing, climate change, pollution (including oil spills), habitat loss, and invasive species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.