Retroviruses contain relatively large amounts of ubiquitin, but the significance of this finding has been unknown. Here, we show that drugs that are known to reduce the level of free ubiquitin in the cell dramatically reduced the release of Rous sarcoma virus, an avian retrovirus. This effect was suppressed by overexpressing ubiquitin and also by directly fusing ubiquitin to the C terminus of Gag, the viral protein that directs budding and particle release. The block to budding was found to be at the plasma membrane, and electron microscopy revealed that the reduced level of ubiquitin results in a failure of mature virus particles to separate from each other and from the plasma membrane during budding. These data indicate that ubiquitin is actually part of the budding machinery.
Retroviral Gag proteins are targeted to the plasma membrane, where they play the central role in virion formation. Several studies have suggested that the membrane-binding signal is contained within the amino-terminal matrix sequence; however, the precise location has never been determined for the Gag protein of any retrovirus. In this report, we show that the first 31 residues of human immunodeficiency virus type 1 Gag protein can function independently as a membrane-targeting domain when fused to heterologous proteins. A bipartite membrane-targeting motif was identified, consisting of the myristylated N-terminal 14 amino acids and a highly basic region that binds acidic phospholipids. Replacement of the N-terminal membrane-targeting domain of pp6o-src with that of human immunodeficiency virus type 1 Gag elicits efficient membrane binding and a transforming phenotype. Removal of myristate or the basic region results in decreased membrane binding of Gag-Src chimeras in vitro and impaired virion formation by Pr55rag in vivo. We propose that the N-terminal Gag sequence functions as a targeting signal to direct interaction with acidic phospholipids on the cytoplasmic leaflet of the plasma membrane.
Rous sarcoma virus (RSV), a member of the avian sarcoma and leukosis family of retroviruses, has long been known to be capable of infecting and transforming mammalian cells; however, such transformed cells do not release virus particles. The RSV gag product (Pr7eaJg) produced in these cells is not released into the culture medium or proteolytically processed to release mature products. Thus, the behavior of Pr76gag in mammalian cells is much like that of mammalian retroviral Gag proteins which have been altered so as to block the addition of myristic acid at residue 2 (Gly). Because the RSV gag product does not possess a myristic acid addition site, we hypothesized that the creation of one by oligonucleotide-directed mutagenesis might permit particles to be released from mammalian cells. Two myristylated forms of Pr76 were created. In Pr76mYr', the first 10 amino acids have been exchanged for those of p60-src, which are known to be sufficient for myristylation. In Pr76mYr2, the Glu at the second residue has been substituted with Gly. The alleles encoding the modified and wild-type forms of Pr76 have been expressed at high levels in mammalian (CV-1) cells by using an SV40-based vector. Surprisingly, we have found that expression of high levels of the unmodified (wild-type) product, Pr76mY1°, results in low levels of particle formation and precursor processing. This indicates that myristic acid is not the sole determinant for targeting. However, the addition of myristic acid to Pr76mYr' or Pr76mY'2 resulted in a fivefold enhancement in Gag function. In all aspects examined, the behavior of myristylated Pr76 was identical to that of the authentic product produced in avian cells. We also show that processing is mediated by the gag-encoded protease and that removal of the amino terminus to create Pr76gagx results in an inability to form particles or be processed. This suggests that proper targeting is prerequisite for activation of the RSV protease in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.