The application of biocatalysis for the asymmetric reduction
of
activated C=C is a powerful tool for the manufacture of high-value
chemical commodities. The biocatalytic potential of “-ene”
reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases
is well-known; however, the specificity of these enzymes toward mainly
small molecule substrates has highlighted the need to discover “-ene”
reductases from different enzymatic classes to broaden industrial
applicability. Here, we describe the characterization of a flavin-free
double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase
(LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase
superfamily of enzymes. Using steady-state kinetics and biotransformation
reactions, we have demonstrated the regio- and stereospecificity of
NtDBR against a variety of α,β-unsaturated activated alkenes.
In addition to catalyzing the reduction of typical LTD substrates
and several classical OYE-like substrates, NtDBR also exhibited complementary
activity by reducing non-OYE substrates (i.e., reducing the exocyclic
C=C double bond of (R)-pulegone) and in some
cases showing an opposite stereopreference in comparison with the
OYE family member pentaerythritol tetranitrate (PETN) reductase. This
serves to augment classical OYE “-ene” reductase activity
and, coupled with its aerobic stability, emphasizes the potential
industrial value of NtDBR. Furthermore, we also report the X-ray crystal
structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound]
NtDBR complexes. These will underpin structure-driven site-saturated
mutagenesis studies aimed at enhancing the reactivity, stereochemistry,
and specificity of this enzyme.
Reduction of double bonds of α,β-unsaturated carboxylic acids and esters by ene-reductases remains challenging and it typically requires activation by a second electron-withdrawing moiety, such as a halide or second carboxylate group. We showed that profen precursors, 2-arylpropenoic acids and their esters, were efficiently reduced by Old Yellow Enzymes (OYEs). The XenA and GYE enzymes showed activity towards acids, while a wider range of enzymes were active towards the equivalent methyl esters. Comparative co-crystal structural analysis of profen-bound OYEs highlighted key interactions important in determining substrate binding in a catalytically active conformation. The general utility of ene reductases for the synthesis of (R)-profens was established and this work will now drive future mutagenesis studies to screen for the production of pharmaceutically-active (S)-profens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.