ResumenEste artículo considera el problema de localización y ruteo con flota heterogénea (LRPH, por sus siglas en inglés), en el cual se busca determinar los depósitos a ser abiertos, los clientes a ser asignados a cada depósito, y las rutas a ser construidas para satisfacer las demandas de los clientes, considerando una flota de vehículos con capacidad diversa y costos de utilización asociados. El objetivo es minimizar la suma de los costos asociados con la apertura de depósitos, los costos de los vehículos utilizados, y los costos variables directamente relacionados con las distancias recorridas. En este artículo, se propone un algoritmo metaheurístico basado en una búsqueda tabú granular para la resolución del problema. Experimentos computacionales en instancias adaptadas de la literatura, muestran que el algoritmo propuesto es capaz de obtener, en tiempos computacionales razonables, soluciones de alta calidad demostrando su efectividad.
This paper contemplates the supply chain design problem of a large-scale company by considering the maximization of the Net Present Value. In particular, the variability of the demand for each type of product at each customer zone has been estimated. As starting point, this paper considers an established supply chain for which the main problem is to determine the decisions regarding expansion of distribution centers. The problem is solved by using a mixed-integer linear programming model, which optimizes the different demand scenarios. The proposed methodology uses a scheme of optimization based on the generation of multiple demand scenarios of the supply network. The model is based on a real case taken from a multinational food company, which supplies to the Colombian and some international markets. The obtained results were compared with the equivalent present costs minimization scheme of the supply network, and showed the importance and efficiency of the proposed approach as an alternative for the supply chain design with stochastic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.