Background Limited attention has been paid to how and why older adults choose to engage with technology-facilitated health care (e-health), and the factors that impact on this. This scoping review sought to address this gap. Methods Databases were searched for papers reporting on the use of e-health services by older adults, defined as being aged 60 years or older, with specific reference to barriers and facilitators to e-health use. Result 14 papers were included and synthesised into five thematic categories and related subthemes. Results are discussed with reference to the Unified Theory of Acceptance and Use of Technology2. The most prevalent barriers to e-health engagement were a lack of self-efficacy, knowledge, support, functionality, and information provision about the benefits of e-health for older adults. Key facilitators were active engagement of the target end users in the design and delivery of e-health programs, support for overcoming concerns privacy and enhancing self-efficacy in the use of technology, and integration of e-health programs across health services to accommodate the multi-morbidity with which older adults typically present. Conclusion E-health offers a potential solution to overcome the barriers faced by older adults to access timely, effective, and acceptable health care for physical and mental health. However, unless the barriers and facilitators identified in this review are addressed, this potential will not be realised.
There is limited information on the anthropometry, strength, endurance and flexibility of female rock climbers. The aim of this study was to compare these characteristics in three groups of females: Group 1 comprised 10 elite climbers aged 31.3 +/- 5.0 years (mean +/- s) who had led to a standard of 'hard very severe'; Group 2 consisted of 10 recreational climbers aged 24.1 +/- 4.0 years who had led to a standard of 'severe'; and Group 3 comprised 10 physically active individuals aged 28.5 +/- 5.0 years who had not previously rock-climbed. The tests included finger strength (grip strength, finger strength measured on climbing-specific apparatus), flexibility, bent arm hang and pull-ups. Regression procedures (analysis of covariance) were used to examine the influence of body mass, leg length, height and age. For finger strength, the elite climbers recorded significantly higher values (P < 0.05) than the recreational climbers and non-climbers (four fingers, right hand: elite 321 +/- 18 N, recreational 251 +/- 14 N, non-climbers 256 +/- 15 N; four fingers, left hand: elite 307 +/- 14 N, recreational 248 +/- 12 N, non-climbers 243 +/- 11 N). For grip strength of the right hand, the elite climbers recorded significantly higher values than the recreational climbers only (elite 338 +/- 12 N, recreational 289 +/- 10 N, non-climbers 307 +/- 11 N). The results suggest that elite climbers have greater finger strength than recreational climbers and non-climbers.
The aim of this study was to compare the results from a Cooper walk run test, a multistage shuttle run test, and a submaximal cycle test with the direct measurement of maximum oxygen uptake on a treadmill. Three predictive tests of maximum oxygen uptake-linear extrapolation of heart rate of VO2 collected from a submaximal cycle ergometer test (predictedL,)
BackgroundSouth Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.Methodology/Principal FindingsTwenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4±5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46±2.20 vs 6.00±1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.Conclusions/SignificanceThese data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.
High-intensity exercise training contributes to the production and accumulation of blood lactate, which is cleared by active recovery. However, there is no commonly agreed intensity or mode for clearing accumulated blood lactate. We studied clearance of accumulated blood lactate during recovery at various exercise intensities at or below the lactate threshold after high-intensity interval runs that prompted lactate accumulation. Ten males repeated 5-min running bouts at 90% of maximal oxygen uptake ( _ V O 2max ), which increased blood lactate concentration from 1.0 + 0.1 to 3.9 + 0.3 mmol Á l 71 . This was followed by recovery exercises ranging from 0 to 100% of lactate threshold. Repeated blood lactate measurements showed faster clearance of lactate during active versus passive recovery, and that the decrease in lactate was more rapid during higher (60-100% of lactate threshold) than lower (0-40% of lactate threshold) (P 5 0.05) intensities. The more detailed curve and rate analyses showed that active recovery at 80-100% of lactate threshold had shorter time constants for 67% lactate clearance and higher peak clearance rates than 40% of lactate threshold or passive recovery (P 5 0.05). Finally, examination of self-regulated intensities showed enhanced lactate clearance during higher versus lower intensities, further validating the intensity dependence of clearance of accumulated blood lactate. Therefore, active recovery after strenuous exercise clears accumulated blood lactate faster than passive recovery in an intensity-dependent manner. Maximum clearance occurred at active recovery close to the lactate threshold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.