To investigate the molecular basis for the diversity in muscarinic cholinergic function, we have isolated the genes encoding the human M1 and M2 muscarinic receptors (mAChR) as well as two previously undiscovered mAChR subtypes, designated HM3 and HM4. The amino acid sequence of each subtype reflects a structure consisting of seven, highly conserved transmembrane segments and a large intracellular region unique to each subtype, which may constitute the ligand‐binding and effector‐coupling domains respectively. Significant differences in affinity for muscarinic ligands were detected in individual mAChR subtypes produced by transfection of mammalian cells. Each subtype exhibited multiple affinity states for agonists; differences among subtypes in the affinities and proportions of such sites suggest the capacity of mAChR subtypes to interact differentially with the cellular effector‐coupling apparatus. Subtype‐specific mRNA expression was observed in the heart, pancreas and a neuronal cell line, indicating that the regulation of mAChR gene expression contributes to the differentiation of cholinergic activity.
Muscarinic acetylcholine receptors (mAChRs), like many other neurotransmitter and hormone receptors, transduce agonist signals by activating G proteins to regulate ion channel activity and the generation of second messengers via the phosphoinositide (PI) and adenylyl cyclase systems. Human mAChRs are a family of at least four gene products which have distinct primary structures, ligand-binding properties and patterns of tissue-specific expression. To examine the question of whether functional differences exist between multiple receptor subtypes, we have investigated the ability of each subtype to regulate PI hydrolysis and adenylyl cyclase when expressed individually in a cell lacking endogenous mAChRs. We show that the HM2 and HM3 mAChRs efficiently inhibit adenylyl cyclase activity but poorly activate PI hydrolysis. In contrast, the HM1 and HM4 mAChRs strongly activate PI hydrolysis, but do not inhibit adenylyl cyclase, and in fact can substantially elevate cAMP levels. Interestingly, the subtypes that we find to be functionally similar are also more similar in sequence. Our results indicate that the different receptor subtypes are functionally specialized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.