Isoxazolines are oral insecticidal drugs currently licensed for ectoparasite control in companion animals. Here we propose their use in humans for the reduction of vector-borne disease incidence. Fluralaner and afoxolaner rapidly killed ,, and mosquitoes and sand flies after feeding on a drug-supplemented blood meal, with IC values ranging from 33 to 575 nM, and were fully active against strains with preexisting resistance to common insecticides. Based on allometric scaling of preclinical pharmacokinetics data, we predict that a single human median dose of 260 mg (IQR, 177-407 mg) for afoxolaner, or 410 mg (IQR, 278-648 mg) for fluralaner, could provide an insecticidal effect lasting 50-90 days against mosquitoes and sand flies. Computational modeling showed that seasonal mass drug administration of such a single dose to a fraction of a regional population would dramatically reduce clinical cases of Zika and malaria in endemic settings. Isoxazolines therefore represent a promising new component of drug-based vector control.
Seven novel and potent Raf small molecule kinase inhibitors (C1-7) were evaluated in seven-day oral repeat dose rat toxicity studies. All compounds tested induced hyperplasia in multiple tissues. Consistently affected was stratified squamous epithelium at a number of sites and transitional epithelium of urinary bladder and kidney. A seven-day time course study in rats showed morphologic evidence of epithelial proliferation in the nonglandular stomach within four to five hours after a single dose of C-1. Similar indications of cellular proliferation were observed in the urinary bladder by day 2 and in the heart, kidney, and liver by day 3. Transcriptional evidence of proliferation in the urinary bladder was detected within four to five hours after a single dose consistent with activation of the PI3K/AKT and ERK/MAPK pathways. In a twenty-eight-day rat toxicity study of C-1, hyperplasia was observed in the esophagus, nonglandular stomach, skin, urinary bladder, kidney, and heart. Hyperplasia of transitional epithelium of the urinary bladder was particularly severe and in one female rat was accompanied by the presence of a transitional cell carcinoma. These results suggest that these Raf inhibitors induce early transcriptional changes driving unchecked cell proliferation, resulting in marked tissue hyperplasia that can progress to carcinoma within a short time frame.
Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell–recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.