Over the past decade, electronic parts have become smaller, more complex, and highly functional. This is well understood for many products within the consumer and handheld markets. Miniaturization, however, is also impacting sectors such as aerospace and automotive, pushing the limits of already harsh environments. As more power is driven through active devices, the integrity of materials used to provide the electrically conductive interfaces is becoming increasingly critical. For many applications, adhesive films have been the preferred material because they offer a variety of performance and operational advantages such high electrical and thermal conductivity, uniform bondlines, superior adhesion, and low processing temperatures. Today, as miniaturization pushes power-density limits and although devices are also being exposed to high operating temperatures, even for traditionally robust adhesive films, it is challenging to cope with these conditions. In sectors such as aerospace where high reliability is essential, material capability must evolve to deliver on fail-safe performance expectations. This study compares the performance of an established and widely used electrically conductive film adhesive with that of a newly developed film designed to provide improved mechanical performance over a higher elevated temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.