Microbubbles (1–10 μm diameter) have been used as conventional ultrasound contrast agents (UCAs) for applications in contrast-enhanced ultrasound (CEUS) imaging. Nanobubbles (<1 μm diameter) have recently been proposed as potential extravascular UCAs that can extravasate from the leaky vasculature of tumors or sites of inflammation. However, the echogenicity of nanobubbles for CEUS remains controversial owing to prior studies that have shown very low ultrasound backscatter. We hypothesize that microbubble contamination in nanobubble formulations may explain the discrepancy. To test our hypothesis, we examined the size distributions of lipid-coated nanobubble and microbubble suspensions using multiple sizing techniques, examined their echogenicity in an agar phantom with fundamental-mode CEUS at 7 MHz and 330 kPa peak negative pressure, and interpreted our results with simulations of the modified Rayleigh–Plesset model. We found that nanobubble formulations contained a small contamination of microbubbles. Once the contribution from these microbubbles is removed from the acoustic backscatter, the acoustic contrast of the nanobubbles was shown to be near noise levels. This result indicates that nanobubbles have limited utility as UCAs for CEUS.
Microbubbles (1–10 µm diameter) have been used as conventional ultrasound contrast agents (UCAs) for applications in contrast-enhanced ultrasound (CEUS) imaging. Nanobubbles (<1 µm diameter) have recently been proposed as potential extravascular UCAs that can extravasate from the leaky vasculature of tumors or sites of inflammation. However, the echogenicity of nanobubbles for CEUS remains controversial owing to prior studies that have shown very low ultrasound backscatter. We hypothesize that microbubble contamination in nanobubble formulations may explain the discrepancy. To test our hypothesis, we examined the size distributions of lipid-coated nanobubble and microbubble suspensions using multiple sizing techniques, examined their echogenicity in an agar phantom with fundamental-mode CEUS at 7 MHz and 330 kPa peak negative pressure, and interpreted our results with simulations of the modified Rayleigh-Plesset model. We found that nanobubble formulations contained a small contamination of microbubbles. Once the contribution from these microbubbles is removed from the acoustic backscatter, the acoustic contrast of the nanobubbles was shown to be near noise levels. This result indicates that nanobubbles have limited utility as UCAs for CEUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.