Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.
Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (P(o)) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC P(o) and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde.
Kv1.3 channels play an important role in modulating lymphocyte proliferation and apoptosis. We hypothesized that Kv1.3 channels in B lymphocytes might be regulated by rituximab, an antibody to CD20, a drug for treatments of B-cell lymphomas and autoimmune diseases. Using both whole-cell and cell-attached patch-clamp techniques, we found that rituximab inhibited Kv1.3 channels in Daudi human B lymphoma cells by promoting the channel inactivation at a concentration which was much greater than that required for activation of CD20. The effect of rituximab on Kv1.3 channels was abolished after selective blockade of FcγRIIB receptors with anti-FcγRIIB antibody. Western blot experiments showed that Daudi B cells expressed both Kv1.3 channel and the low affinity Fc receptor, FcγRIIB, which could be activated by the Fc region of rituximab. In contrast, normal lymphocytes expressed less Kv1.3 channels with faster inactivation. Confocal microscopy and flow cytometry data showed that rituximab induced apoptosis of Daudi B cells and that the effect was attenuated by blockade of FcγRIIB receptors and partially mimicked by inhibition of Kv1.3 channels. These results suggest that in addition to previously described complement-dependent cytotoxicity, rituximab also induces apoptosis of malignant B lymphocyte by stimulating FcγRIIB receptors and inhibiting Kv1.3 channels.
Several proteases have been found to cleave ENaC subunits to produce the active form of the heterotrimeric channel. ENaC cleavage is thought to occur primarily in the trans‐Golgi network (TGN) by serine proteases. ENaC may undergo additional cleavage after it is inserted into the apical membrane or while it is being recycled in recycling endosomes. Therefore, we investigated if secreted proteases could cleave and activate ENaC subunits. We performed two‐dimensional gel electrophoresis after concentrating condition medium taken from the apical and basolateral sides of 2F3 cells that formed tight junctions and demonstrated a tight resistance. We identified a protein secreted onto the apical side of 2F3 cells by mass spectrometry, as the cysteine protease cathepsin B. We expressed and purified full length recombinant alpha, beta, and gamma subunits of ENaC as GST fusion proteins. We identified a putative site for cathepsin B within the alpha subunit of ENaC that is somewhat conserved between species. We demonstrate that active cathepsin B cleaves the alpha subunit, but not the beta or gamma subunits of ENaC in vitro. We use single channel patch clamp studies and short circuit current experiments to show ENaC activity decreases in response to a specific cathepsin B inhibitor after being directly applied onto the apical side of 2F3 cells. These results suggest a novel mechanism for the proteolytic regulation of ENaC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.