Self-assembling colloidal particles in the cubic diamond crystal structure could potentially be used to make materials with a photonic bandgap 1-3 . Such materials are beneficial because they suppress spontaneous emission of light 1 and are valued for their applications as optical waveguides, filters and laser resonators 4 , for improving light-harvesting technologies 5-7 and for other applications 4,8 . Cubic diamond is preferred for these applications over more easily self-assembled structures, such as face-centred-cubic structures 9,10 , because diamond has a much wider bandgap and is less sensitive to imperfections 11,12 . In addition, the bandgap in diamond crystals appears at a refractive index contrast of about 2, which means that a photonic bandgap could be achieved using known materials at optical frequencies; this does not seem to be possible for face-centred-cubic crystals 3,13 . However, selfassembly of colloidal diamond is challenging. Because particles in a diamond lattice are tetrahedrally coordinated, one approach has been to self-assemble spherical particles with tetrahedral sticky patches [14][15][16] . But this approach lacks a mechanism to ensure that the patchy spheres select the staggered orientation of tetrahedral bonds on nearest-neighbour particles, which is required for cubic diamond 15,17 . Here we show that by using partially compressed tetrahedral clusters with retracted sticky patches, colloidal cubic diamond can be self-assembled using patch-patch adhesion in combination with a steric interlock mechanism that selects the required staggered bond orientation. Photonic bandstructure calculations reveal that the resulting lattices (direct and inverse) have promising optical properties, including a wide and complete photonic bandgap. The colloidal particles in the self-assembled cubic diamond structure are highly constrained and mechanically stable, which makes it possible to dry the suspension and retain the diamond structure. This makes these structures suitable templates for forming high-dielectric-contrast photonic crystals with cubic diamond symmetry.
Self-assembling colloidal particles into clathrate hydrates requires the particles to have tetrahedral bonds in the eclipsed conformation. It has been suggested that colloidal particles with eclipsed triangular-shaped patches can form clusters in the eclipsed conformation that leads to colloidal clathrate hydrates. However, in experiments, patches have been limited to circular shapes due to surface energy minimization. Here, we extend the particle synthesis strategy and show that colloidal particles with triangular patches can be readily fabricated by controlling the viscosity of the liquid oil droplets during a colloidal fusion process. The position, orientation, curvature, shape, and size of the patches are all exclusively determined by the intrinsic symmetry of the colloidal clusters, resulting in dipatch particles with eclipsed patches and tetrahedral patchy particles with patch vertices pointing toward each other. Patch curvature can be controlled by tuning the viscosity of the oil droplets and using different surfactants. Using strain-promoted azide−alkyne cycloaddition, single-stranded DNA can be selectively functionalized on the patches. However, after annealing these particles, dipatch particles form chains because the patches are too small to form clathrate hydrates. Under certain conditions, tetrahedral triangular patchy particles should prefer the eclipsed conformation, as it maximizes DNA hybridization. However, we observe random aggregates, which result from having triangular patches that are too big. We estimate that tetrahedral patchy particles that can crystallize need to be less than 1 μm in diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.