Starting 2009, the ALMA project initiated one of its most exciting phases within construction: the first antenna from one of the vendors was delivered to the Assembly, Integration and Verification team. With this milestone and the closure of the ALMA Test Facility in New Mexico, the JAO Computing Group in Chile found itself in the front line of the project's software deployment and integration effort. Among the group's main responsibilities are the deployment, configuration and support of the observation systems, in addition to infrastructure administration, all of which needs to be done in close coordination with the development groups in Europe, North America and Japan. Software support has been the primary interaction key with the current users (mainly scientists, operators and hardware engineers), as the software is normally the most visible part of the system.During this first year of work with the production hardware, three consecutive software releases have been deployed and commissioned. Also, the first three antennas have been moved to the Array Operations Site, at 5.000 meters elevation, and the complete end-to-end system has been successfully tested. This paper shares the experience of this 15-people group as part of the construction team at the ALMA site, and working together with Computing IPT, on the achievements and problems overcomed during this period. It explores the excellent results of teamwork, and also some of the troubles that such a complex and geographically distributed project can run into. Finally, it approaches the challenges still to come, with the transition to the ALMA operations plan.
The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.