Easier oxidation over gold with added water
Gold adsorbed on metal oxides is an excellent catalyst for the room-temperature oxidation of CO to CO
2
. However, there has been continuing disagreement between different studies on the key aspects of this catalyst. Saveeda
et al.
now show through kinetics and infrared spectroscopy that the presence of water can lower the reaction activation barrier by enabling OOH groups to form from adsorbed oxygen (see the Perspective by Mullen and Mullins). The OOH then reacts readily with CO. It thus seems that the main role of oxide support and its interface with the metal is in activating water, but that the steps of the reaction that involve CO occur on gold.
Science
, this issue p.
1599
; see also p.
1564
The mechanism of CO oxidation over supported gold catalysts has long been debated, with two prevailing mechanisms dominating the discussion: a water-assisted mechanism and a mechanism involving O-defect sites. In this study, we directly address this debate through a kinetic and mechanistic investigation of the role of water in CO oxidation over Au/TiO and Au/AlO catalysts; the results clearly indicate a common water-assisted mechanism to be at work. Water adsorption isotherms were determined with infrared spectroscopy; the extracted equilibrium constant was essentially the same for both catalysts. Added water decreases CO adsorption on Au/TiO, likely by blocking CO binding sites at the metal-support interface. Reaction kinetics (CO, O, and HO reaction orders) were essentially the same for both catalysts, as were measured O-H(D) kinetic isotope effects. These data indicate that the two catalysts operate by essentially the same mechanism under the conditions of these experiments (ambient temperature, significant amounts of water available). A reaction mechanism incorporating the kinetic and thermodynamic data and accounting for different CO and O/COOH binding sites is proposed. The mechanism and kinetic data are treated with an active site (Michaelis-Menten) approach. This indicated that water adsorption does not significantly affect reaction rate constants, only the number of active sites available at a given water pressure. Extracted water and O binding constants are similar on both catalysts and consistent with previous DFT calculations. Water adsorption constants are also similar to independently determined equilibrium constants measured by IR spectroscopy. The likely roles of water, surface carbonates, and oxygen vacancies at the metal-support interface are discussed. The results definitively show that, at least in the presence of added water, O vacancies cannot play an important role in the room-temperature catalysis, and that the water-assisted mechanism is far more consistent with the preponderance of the kinetic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.