In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.
The study aimed at determining thrips species composition and thrips population density on French bean planted as a sole crop and as an intercrop with either sunflower, Irish potato, or baby corn, in various combinations. Field experiments were conducted in two seasons to examine: (1) thrips population development and thrips species composition over time, (2) effect of intercrops on thrips population density and natural enemies, and (3) effect of intercrops on French bean yield. The experiments were conducted at the Kenya Agricultural Research Institute, Embu, Kenya in a randomized complete block design with four replicates. The thrips population on French beans increased with time. It showed a peak at the flowering stage then started declining when the crops were nearing senescence. French beans hosted four thrips species, Megalurothrips sjostedti (Trybom), Frankliniella schultzei (Trybom), Frankliniella occidentalis (Pergande), and Hydatothrips aldolfifriderici (Karny) (all Thysanoptera: Thripidae) in order of decreasing abundance. The main thrips species on Irish potato and sunflower was F. schultzei. Baby corn hosted only Frankliniella williamsi (Hood) and Thrips pusillus (Bagnall). A monocrop of French bean hosted more thrips than a French bean intercrop mix. Thrips natural enemies such as Orius spp. and Ceranisus spp. were recorded in all crop plants but in especially high numbers on French bean and baby corn, respectively. Plots with French bean alone had about 1.4 times higher yields compared to intercropped plots of French bean with sunflower and French bean with baby corn. However, the percentage of pods that could get rejected on the market due to thrips damage was highest on plots with French bean alone (68 and 63%) and lowest on plots with French bean and baby corn (35 and 37%) in the first and second seasons, respectively. This study showed that a complex of thrips is found in the field and its composition varies with crop stage and species. Intercropping French bean with other crops compromises on French bean yield but reduces damage to the French bean pods, thereby enhancing marketable yield.
Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.