Lateritic soil is one of the major construction materials in road pavement. However, obtaining lateritic soil with sufficient strength is difficult, which may necessitate its improvement by stabilization. Lateritic soil, in this study, was stabilized with upto 12% Maize Husk Ash (MHA) by weight of soil samples, with a view of improving its geotechnical properties and assessing it as subbase materials. Classification tests (particle size analysis, specific gravity, Atterbergs limits) and strength index tests (compaction, california bearing ratio (CBR), unconfined compression test (UCS) were performed on both the natural and the MHA-stabilized soil samples. The grain size analysis shows that the percentage passing No. 200 BS sieve was 47.7% for the natural lateritic soil and between 50 and 62.1% for MHA stabilized lateritic soil. The liquid limit, plastic limit and plasticity index are in the range of 61 to 76%, 28 to 53% and 16 to 37% respectively. Also, the maximum dry densities increased, while the optimum water content decreased with increase in the MHA content. The CBR value of the lateritic soil increased with MHA content up till 6% addition of MHA and thereafter decreased, while higher UCS value was obtained up till 3% and then decreased with increasing content of MHA. The results indicated that the MHA stabilized lateritic soil could only be used as subgrade and fill materials.
A dark reddish-brown lateritic soil collected from existing borrow pit abandoned by Reynold Construction Company Ltd behind New WAZOBIA Market on Latitude 08008′N and Longitude 04014′E along Ogbomoso-Ilorin Express road, Ogbomoso, Oyo State. Nigeria was treated with cement kiln dust (CKD), a by-product of long wet kiln, obtained from West African Portland Cement Organisation (WAPCO), Ewekoro, Ogun State, Nigeria, under varying moulding water content.The results show gradual reduction in the plasticity index of the samples, decrease in the maximum dry densities (MDD) with corresponding increase in the optimum moisture contents (OMC) of the treated soil samples. The unconfined compressive strength (UCS) of the treated samples increases with both increase in the treatment content as well as compactive effort from British Standard (BS) to West African Standard (WAS) however, there was reduction in the UCS with varying moulding water content as the water content increases and decreases relative to optimum moisture content. The maximum UCS was obtained at optimum moisture content.Cement kiln dust though regarded as waste can therefore serve as potential material in the stabilization of the lateritic soil when compacted at moisture content within its OMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.