Elastic constants and cross-sectional dimensions of imprinted nanolines of poly(methyl methacrylate) (PMMA) on silicon substrates are determined nondestructively from finite-element inversion analysis of dispersion curves of hypersonic acoustic modes of these nanolines measured with Brillouin light scattering. The results for the cross-sectional dimensions, under the simplifying assumption of vertical sides and a semicircular top, are found to be consistent with dimensions determined from critical-dimension small-angle x-ray scattering measurements. The elastic constants C(11) and C(44) are found to be, respectively, 11.6% and 3.1% lower than their corresponding values for bulk PMMA. This result is consistent with the dimensional dependence of the quasi-static Young's modulus determined from buckling measurements on PMMA films with lower molecular weights. This study provides the first evidence of size-dependent effects on hypersonic elastic properties of polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.