Image registration is a process that underlies many new techniques in radiation oncologyfrom multimodal imaging and contour propagation in treatment planning to dose accumulation throughout treatment. Deformable image registration (DIR) is a subset of image registration subject to high levels of complexity in process and validation. A need for local guidance to assist in high-quality utilisation and best practice was identified within the Australian community, leading to collaborative activity and workshops. This report communicates the current limitations and best practice advice from early adopters to help guide those implementing DIR in the clinic at this early stage. They are based on the state of image registration applications in radiotherapy in Australia and New Zealand (ANZ), and consensus discussions made at the 'Deforming to Best Practice' workshops in 2018. The current status of clinical application use cases is presented, including multimodal imaging, automatic segmentation, adaptive radiotherapy, retreatment, dose accumulation and response assessment, along with uptake, accuracy and limitations. Key areas of concern and preliminary suggestions for commissioning, quality assurance, education and training, and the use of automation are also reported. Many questions remain, and the radiotherapy community will benefit from continued research in this area. However, DIR is available to clinics and this report is intended to aid departments using or about to use DIR tools now.
Ionizing radiation causes structural chromosomal aberrations, a proportion of which give rise to chromosome fragments without spindle attachment organelles. When a cell divides, some of these fragments are excluded from the main daughter nuclei and form small nuclei within the cytoplasm. The cytokinesis-block micronucleus assay allows these micronuclei (MN) to be counted, providing an in situ biological dosimeter. In this study, we evaluated the micronucleus frequency in peripheral blood lymphocytes after in vitro incubation with the alpha conjugates (213)BiI(3) and (213)Bi-9.2.27 (AIC). Lymphocytes were inoculated in vitro AIC for 3 h. Further, we report the first MN measurements in melanoma patients after targeted alpha therapy (TAT) with (213)Bi-9.2.27. Patients were injected with 260-360 MBq of AIC, and blood samples taken at 3 h, 2 weeks and 4 weeks post-treatment. Absorbed dose (MIRD) and effective total body dose (PED) were calculated. The MN frequency in lymphocytes was similar for equal in vitro incubation activities of (213)BiI(3) and (213)Bi-9.2.27 (P=0.5), indicating that there is no selective targeting of lymphocytes by the alpha conjugates. After inoculation with 10-1200 kBq mL-1 of AIC, there was a substantial activity-related increase in MN. The number of MN in the blood of treated patients peaked at 3 h post-TAT, slowly returning to baseline levels by 4 weeks. The mean photon equivalent dose (PED) is 0.43 Gy (SD 0.15) and the mean MIRD calculated absorbed dose is 0.11 Gy (SD 0.03), giving an RBE=4+/-0.4 for this study.
Objectives: Rigid image registration (RIR) and deformable image registration (DIR) are widely used in radiotherapy. This project aims to capture current international approaches to image registration. Methods: A survey was designed to identify variations in use, resources, implementation, and decision-making criteria for clinical image registration. This was distributed to radiotherapy centers internationally in 2018. Results: There were 57 responses internationally, from the Americas (46%), Australia/New Zealand (32%), Europe (12%), and Asia (10%). Rigid image registration and DIR were used clinically for computed tomography (CT)-CT registration (96% and 51%, respectively), followed by CT-PET (81% and 47%), CT-CBCT (84% and 19%), CT-MR (93% and 19%), MR-MR (49% and 5%), and CT-US (9% and 0%). Respondent centers performed DIR using dedicated software (75%) and treatment planning systems (29%), with 84% having some form of DIR software. Centers have clinically implemented DIR for atlas-based segmentation (47%), multi-modality treatment planning (65%), and dose deformation (63%). The clinical use of DIR for multimodality treatment planning and accounting for retreatments was considered to have the highest benefit-to-risk ratio (69% and 67%, respectively). Conclusions: This survey data provides useful insights on where, when, and how image registration has been implemented in radiotherapy centers around the world. DIR is mainly in clinical use for CT-CT (51%) and CT-PET (47%) for the head and neck (43-57% over all use cases) region. The highest benefit-risk ratio for clinical use of DIR was for multi-modality treatment planning and accounting for retreatments, which also had higher clinical use than for adaptive radiotherapy and atlasbased segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.