BackgroundStriatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases.ResultsTo help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3.ConclusionsStriatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between striatin's calmodulin-binding and WD-domains and recruits the PP2A A/C heterodimer to its coiled-coil/oligomerization domain. Residues outside the previously reported coiled-coil domain of striatin are necessary for its oligomerization. Striatin-associated PP2A is critical for Mst3 dephosphorylation and inactivation. Upon inhibition of PP2A, Mst3 activation appears to involve autophosphorylation of multiple activation loop phosphorylation sites. Mob3 can associate with striatin sequences C-terminal to the Mst3 binding site but also with sequences proximal to striatin-associated PP2A, consistent with a possible role for Mob 3 in the regulation of Mst3 by PP2A.
Transcription of the myelin basic protein (MBP) gene is regulated in a cell-type-specific and developmental stage-specific manner during myelin formation in the murine central nervous system. The 5'-flanking region of the MBP gene contains several regulatory elements that differentially contribute to the cell-type-specific transcription of MBP in cells derived from the central nervous system. The proximal element, termed MB1, which is located between nucleotides -14 and -50 with respect to the RNA start site, has previously been shown to have characteristics of a cell-type-specific enhancer element. In this study, we used band shift and UV cross-linking assays to identify DNA-binding proteins in mouse brain nuclear extract which interact with the MB1 element. Fractionation of these extracts has allowed the identification of a 38-to 41-kDa nuclear protein, derived from mouse brain tissue at the peak of myelination, which specifically binds the MB1 DNA sequence. (7,12,35,45
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.