The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development.
Melatonin (MEL) is a neuroendocrine hormone secreted by the pineal gland in association with the suprachiasmatic nucleus and peripheral tissues. MEL has been observed to play a critical role in the reproductive process and in the fetomaternal interface. Extrapineal synthesis has been reported in mammalian models during pregnancy, especially by the placenta tissue. MEL can regulate intracellular processes (e.g., G-proteins) and the activity of second messengers (e.g., cAMP, IP(3,) Ca(2+)). During neurodevelopment, these activities regulated by melatonin have an important role as an intracellular signaling for gene expression regulation. To review the role of MEL in neurodevelopment, we built interactome networks of different proteins that act in these processes using systems biology tools. The analyses of interactome networks revealed that MEL could modulate neurodevelopment through the regulation of Ca(2+) intracellular levels and influencing BMP/SMAD signaling, thus affecting neural gene responses and neuronal differentiation.
One theory that attempts to explain how and why an organism ages is the developmental hypothesis of aging (DevAge), which describes how developmental programming leads to aging in adults. Interestingly, the developmental origins of health and disease hypothesis (DOHaD) asserts that some aging-associated diseases that occur in adults are closely related to development and to conditions in the intrauterine environment. Thus, both aging and aging-associated diseases can be viewed, at least in part, as the result of a developmental program that is activated early in embryogenesis and persists throughout the lifespan of the organism. We would expect this developmental program to be regulated by a set of interacting protein networks that connect environmental and molecular signals. However, the connection between aging and development is not clear. Thus, a systems biology approach that incorporates different "omic" databases for two mammalian models, Homo sapiens and Mus musculus, was used to evaluate how development and aging are interconnected. Interestingly, three major, evolutionarily conserved processes, namely the immune system, epigenetics, and aerobic metabolism, appear to regulate aging and development in both H. sapiens and M. musculus. Considering that these three processes are essential to embryogenesis, the protein networks within these processes are subjected to strong selective pressure to eliminate gross developmental abnormalities in early embryogenesis. This selective pressure becomes more relaxed in the adult organism, permitting the onset of aging-associated diseases and inflammation-related aging; this concept echoes the antagonistic pleiotropy hypothesis of aging.
Aging is a consequence of an organism's evolution, where specific traits that lead to the organism's development eventually promote aged phenotypes or could lead to age-related diseases. In this sense, one theory that broadly explored development and its association to aging is the developmental aging theory (DevAge), which also encompasses most known age-associated theories. Thus, we employed different systems biology tools to prospect developmental and aging-associated networks for human and murine models for evolutionary comparison. The gathered data suggest a model where proteins related to inflammation, development, epigenetic mechanisms and oxygen homeostasis coordinate the interplay between development and aging. Moreover, the mechanism also appears to be evolutionary conserved in both mammalian models, further corroborating the DevAge molecular model.
The heart is the first organ in the embryo to form. Its structural and functional complexity is the result of a thorough developmental program, where sphingolipids play an important role in cardiogenesis, heart maturation, angiogenesis, the regulation of vascular tone and vessel permeability. Sphingolipids are necessary for signal transduction and membrane microdomain formation. In addition, recent evidence suggests that sphingolipid metabolism is directly interconnected to the modulation of oxidative stress. However, cardiovascular development is highly sensitive to excessive reactive species production, and disturbances in sphingolipid metabolism can lead to abnormal development and cardiac disease. Therefore, in this review, we address the molecular link between sphingolipids and oxidative stress, connecting these pathways to cardiovascular development and cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.