A protective role for CD8+ T cells during viral infections is generally accepted, but little is known about how CD8+ T cell responses develop during primary infections in infants, their efficacy, and how memory is established after viral clearance. We studied CD8+ T cell responses in bronchoalveolar lavage (BAL) samples and blood of infants with a severe primary respiratory syncytial virus (RSV) infection. RSV-specific CD8+ T cells with an activated effector cell phenotype: CD27+CD28+CD45RO+CCR7−CD38+HLA-DR+Granzyme B+CD127− could be identified in BAL and blood. A high proportion of these CD8+ T cells proliferated and functionally responded upon in vitro stimulation with RSV Ag. Thus, despite the very young age of the patients, a robust systemic virus-specific CD8+ T cell response was elicited against a localized respiratory infection. RSV-specific T cell numbers as well as the total number of activated effector type CD8+ T cells peaked in blood around day 9–12 after the onset of primary symptoms, i.e., at the time of recovery. The lack of a correlation between RSV-specific T cell numbers and parameters of disease severity make a prominent role in immune pathology unlikely, in contrast the T cells might be involved in the recovery process.
We provide evidence that a pool of functional RSV-specific CD8(+) memory T cells persists in the peripheral blood of healthy individuals and patients with COPD. Low numbers of RSV-specific memory T cells in the elderly and in patients with COPD may explain the increased susceptibility to RSV infection in these populations.
CD8+ T lymphocytes play a major role in the clearance of respiratory syncytial virus (RSV)infections. To be able to study the primary CTL response in RSV-infected children, epitopes presented by a set of commonly used HLA alleles (HLA-A1, -A3, -B44 and -B51) were searched for. Five epitopes were characterized derived from the matrix (M), non-structural (NS2) and second matrix (M2) proteins of RSV. All epitopes were shown to be processed and presented by RSV-infected antigen-presenting cells. HLA-A1 tetramers for one of these epitopes derived from the M protein were constructed and used to quantify and phenotype the memory CD8 + T cell pool in a panel of healthy adult donors. In about 60 % of the donors, CD8 + T cells specific for the M protein could be identified. These cells belonged to the memory T cell subset characterized by expression of CD27 and CD28, and down-regulation of CCR7 and CD45RA. The frequency of tetramer-positive cells varied between 0?4 and 3 per 10 4 CD8 + T cells in PBMC of healthy asymptomatic adult donors.
We determined the dynamics of CD8+ T cells specific for influenza virus and respiratory syncytial virus in blood and tracheostoma aspirates of children during the course of respiratory infections. We showed that during localized respiratory infections the ratio of activated effector CD8+ T cells to resting memory/naive CD8+ T cells in peripheral blood increased significantly. Furthermore, the number of effector/memory T cells specific for respiratory viruses declined in blood and increased in the airways, suggesting that these T cells redistributed from blood to airways. T cells specific for the infecting virus were present in the airways for longer periods at increased levels than nonspecifically recruited bystander T cells. After clearance of the infection, the ratio of resting memory and naive CD8+ T cells normalized in peripheral blood and also memory T cell numbers specific for unrelated viruses that declined during the infection due to bystander recruitment were restored. Taken together, these results showed a significant systemic T cell response during relatively mild secondary infections and extensive dynamics of virus-specific and nonspecific Ag-experienced T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.