Auditory perceptual decisions are thought to be mediated by the ventral auditory pathway. However, the specific and causal contributions of different brain regions in this pathway, including the middle-lateral (ML) and anterolateral (AL) belt regions of the auditory cortex, to auditory decisions have not been fully identified. To identify these contributions, we recorded from and microstimulated ML and AL sites while monkeys decided whether an auditory stimulus contained more low-frequency or high-frequency tone bursts. Both ML and AL neural activity was modulated by the frequency content of the stimulus. However, only the responses of the most stimulus-sensitive AL neurons were systematically modulated by the monkeys’ choices. Consistent with this observation, microstimulation of AL—but not ML—systematically biased the monkeys’ behavior toward the choice associated with the preferred frequency of the stimulated site. Together, these findings suggest that AL directly and causally contributes sensory evidence used to form this auditory decision.
Tsunada J, Lee JH, Cohen YE. Representation of speech categories in the primate auditory cortex.
Vocal communication is a sensory-motor process requiring auditory self-monitoring to correct errors and to ensure accurate vocal production. When presented with altered speech feedback, humans rapidly change their speech to compensate. Although previous evidence has demonstrated suppression of auditory cortex during both speech and animal vocalization, the specific role of auditory cortex in such feedback-dependent control is unknown. Here we show the relationship between neural activity in the auditory cortex and feedback-dependent vocal control in marmoset monkeys. We demonstrate that marmosets, like humans, exhibit feedback control of vocal acoustics. We further show that feedback-sensitive activity of auditory cortex neurons predict such compensatory vocal changes. Finally, we demonstrate that electrical microstimulation of auditory cortex rapidly evokes similar changes in vocal production. These results are evidence for a causal role of auditory cortex in vocal self-monitoring and feedback-dependent control, and have implications for understanding human speech motor control.
Key points• The role that pyramidal neurons and interneurons have in auditory behaviour and cognition remains unknown.• In this study, we tested the hypothesis that pyramidal cells and interneurons in the auditory cortex play a differential role in auditory categorization.• Putative interneurons in the auditory cortex were more selective for auditory categories than putative pyramidal neurons.• The greater category selectivity in putative interneurons may be a characteristic of auditory categorization in the microcircuit of the auditory cortex.Abstract A comprehensive understanding of the neural mechanisms of cognitive function requires an understanding of how neural representations are transformed across different scales of neural organization: from within local microcircuits to across different brain areas. However, the neural transformations within the local microcircuits are poorly understood. Particularly, the role that two main cell classes of neurons in cortical microcircuits (i.e. pyramidal neurons and interneurons) have in auditory behaviour and cognition remains unknown. In this study, we tested the hypothesis that pyramidal cells and interneurons in the auditory cortex play a differential role in auditory categorization. To test this hypothesis, we recorded single-unit activity from the auditory cortex of rhesus monkeys while they categorized speech sounds. Based on the spike-waveform shape, a neuron was classified as either a narrow-spiking putative interneuron or a broad-spiking putative pyramidal neuron. We found that putative interneurons and pyramidal neurons in the auditory cortex differentially coded category information: interneurons were more selective for auditory categories than pyramidal neurons. These differences between cell classes may be an essential property of the neural computations underlying auditory categorization within the microcircuitry of the auditory cortex.
The advent of cranial implants revolutionized primate neurophysiological research because they allow researchers to stably record neural activity from monkeys during active behavior. Cranial implants have improved over the years since their introduction, but chronic implants still increase the risk for medical complications including bacterial contamination and resultant infection, chronic inflammation, bone and tissue loss and complications related to the use of dental acrylic. These complications can lead to implant failure and early termination of study protocols. In an effort to reduce complications, we describe several refinements that have helped us improve cranial implants and the wellbeing of implanted primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.