The programming of CIs is essential for good performance. However, no Good Clinical Practice guidelines exist. This paper reports on the results of an inventory of the current practice worldwide. A questionnaire was distributed to 47 CI centers. They follow 47600 recipients in 17 countries and 5 continents. The results were discussed during a debate. Sixty-two percent of the results were verified through individual interviews during the following months. Most centers (72%) participated in a cross-sectional study logging 5 consecutive fitting sessions in 5 different recipients. Data indicate that general practice starts with a single switch-on session, followed by three monthly sessions, three quarterly sessions, and then annual sessions, all containing one hour of programming and testing. The main focus lies on setting maximum and, to a lesser extent, minimum current levels per electrode. These levels are often determined on a few electrodes and then extrapolated. They are mainly based on subjective loudness perception by the CI user and, to a lesser extent, on pure tone and speech audiometry. Objective measures play a small role as indication of the global MAP profile. Other MAP parameters are rarely modified. Measurable targets are only defined for pure tone audiometry. Huge variation exists between centers on all aspects of the fitting practice.
Objectives: It is known that early-deafened cochlear implant (CI) users are a very heterogeneously performing group. To gain more insight into this population, this study investigated (1) postoperative changes in auditory performance over time based on various outcome measures, focusing on poor performers, (2) self-perceived outcomes, (3) relations between auditory and self-perceived outcomes, and (4) preimplantation factors predicting postoperative outcomes. Methods: Outcomes were assessed prospectively in a group of 27 early-deafened, late-implanted CI users, up to 3 years after implantation. Outcome measures included open-set word and sentence recognition, closed-set word recognition, speech tracking and a questionnaire on self-perceived outcomes. Additionally, the relative influence of 8 preimplantation factors on CI outcome was assessed with linear regression analyses. Results: Significant improvements were found for auditory performance measures and most of the questionnaire domains. Significant changes of the closed-set word test, speech tracking and questionnaire were also found for a subgroup of poor performers. Correlations between auditory and self-perceived outcomes were weak and nonsignificant. Preoperative word recognition and preoperative hearing thresholds, both for the implanted ear, were significant predictors of postoperative outcome in the multivariable regression model, explaining 63.5% of the variation. Conclusions: Outcome measurement in this population should be adjusted to the patients’ individual performance level and include self-perceived benefit. There is still a need for more knowledge regarding predictors of CI outcomes in this group, but the current study suggests the importance of the preoperative performance of the ear to be implanted.
Background: Prospective research in the field of cochlear implants is hampered by methodological issues and small sample sizes. The ELEPHANT study presents an alternative clinical trial design with a daily randomized approach evaluating individualized tonotopical fitting of a cochlear implant (CI). Methods: A single-blinded, daily-randomized clinical trial will be implemented to evaluate a new imaging-based CI mapping strategy. A minimum of 20 participants will be included from the start of the rehabilitation process with a 1-year follow-up period. Based on a post-operative cone beam CT scan (CBCT), mapping of electrical input will be aligned to natural place-pitch arrangement in the individual cochlea. The CI's frequency allocation table will be adjusted to match the electrical stimulation of frequencies as closely as possible to corresponding acoustic locations in the cochlea. A randomization scheme will be implemented whereby the participant, blinded to the intervention allocation, crosses over between the experimental and standard fitting program on a daily basis, and thus effectively acts as his own control, followed by a period of free choice between both maps to incorporate patient preference. With this new approach the occurrence of a first-order carryover effect and a limited sample size is addressed. Discussion: The experimental fitting strategy is thought to give rise to a steeper learning curve, result in better performance in challenging listening situations, improve sound quality, better complement residual acoustic hearing in the contralateral ear and be preferred by recipients of a CI. Concurrently, the suitability of the novel trial design will be considered in investigating these hypotheses.
Prelingually deafened CI users were less sensitive to temporal modulations than postlingually deafened CI users, and the attenuation rate of their TMTF was steeper. For all CI users, subjects with better amplitude modulation detection skills tended to score better on measures of speech understanding. Significant correlations with low modulation frequencies were found only for the prelingually deafened CI users and not for the postlingually deafened CI users.
Objective: This study investigated the hypotheses that (1) prelingually deafened CI users do not have perfect electrode discrimination ability and (2) the deactivation of non-discriminable electrodes can improve auditory performance. Design: Electrode discrimination difference limens were determined for all electrodes of the array. The subjects' basic map was subsequently compared to an experimental map, which contained only discriminable electrodes, with respect to speech understanding in quiet and in noise, listening effort, spectral ripple discrimination and subjective appreciation. Study Sample: Subjects were six prelingually deafened, late implanted adults using the Nucleus cochlear implant. Results: Electrode discrimination difference limens across all subjects and electrodes ranged from 0.5 to 7.125, with significantly larger limens for basal electrodes. No significant differences were found between the basic map and the experimental map on auditory tests. Subjective appreciation was found to be significantly poorer for the experimental map. Conclusions: Prelingually deafened CI users were unable to discriminate between all adjacent electrodes. There was no difference in auditory performance between the basic and experimental map. Potential factors contributing to the absence of improvement with the experimental map include the reduced number of maxima, incomplete adaptation to the new frequency allocation, and the mainly basal location of deactivated electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.