Ipilimumab is a monoclonal antibody that blocks cytotoxic T-lymphocyte antigen4 (CTLA-4), an inhibitory molecule typically expressed on T cells. Blockade of CTLA-4 induces an overall activation of T cells, including an immune-mediated anti-tumour response. Unfortunately, this broad T cell stimulation also causes immune-related adverse events (irAEs), such as dermatitis, colitis, hepatitis and hypophysitis. Ipilimumab is currently available in Belgium as a second line of treatment for patients with advanced melanoma, and is used at a dose of 3 mg/kg of body weight, although higher doses were previously used (up to 10 mg/kg). We performed a retrospective analysis to identify melanoma patients treated with ipilimumab at the Ghent University Hospital between 2010 and 2013. Data on symptoms, stage and timing of ipilimumab, response and adverse events were collected with a special attention to endocrine disturbances, going from a limited involvement of one endocrine axis to development of a hypophysitis. We identified a total of 39 patients with stage III (No. = 7) or stage IV (No. = 32) melanoma, who received a dose of 3 (No. = 31) or 10 (No. = 8) mg/kg. Six patients developed a severe form of irAEs, including one case of colitis (2 %), one case of sarcoidosis (2 %) and 4 cases (10 %) of hypophysitis. Hypophysitis developed between the second and fourth cycle of ipilimumab administration and was independent of the dose used. We describe four cases of involvement of the pituitary gland during treatment with ipilimumab. When managed with vigilant monitoring and high-dose corticosteroids, the acute symptoms resolve, but lifelong hormone substitution therapy can be necessary. Involvement of the pituitary axes is a severe side effect of treatment with ipilimumab with an urgent need for the correct medical intervention.
Background A substantial proportion of type 1 diabetes (T1D) patients free from known cardiovascular disease (CVD) show premature arterial stiffening, with age, blood pressure, and HbA1c—as gold standard of glycemic control—as main predictors. However, the relationship of arterial stiffness with other time-varying parameters of glycemic control and glycation has been far less explored. This study investigated the relationship of arterial stiffness with several short- and long-term parameters of glycemic control and glycation in patients with T1D, such as advanced glycation end-products (AGEs) and continuous glucose monitoring (CGM)-derived parameters. Methods Cross-sectional study at a tertiary care centre including 54 patients with T1D free from known CVD. Arterial stiffness was assessed with carotid-femoral pulse wave velocity (cf-PWV). Current level and 10-year history of HbA1c were evaluated, and skin AGEs, urinary AGEs, and serum soluble AGE-receptor (sRAGE) concentrations. CGM for 7 days was used to determine time in range, time in hyper- and hypoglycemia, and glycemic variability. Results Cf-PWV was associated with current HbA1c (rs = + 0.28), mean 10-years HbA1c (rs = + 0.36), skin AGEs (rs = + 0.40) and the skin AGEs-to-sRAGE ratio (rs = + 0.40), but not with urinary AGE or serum sRAGE concentrations; and not with any of the CGM-parameters. Multiple linear regression for cf-PWV showed that the model with the best fit included age, T1D duration, 24-h mean arterial pressure and mean 10-years HbA1c (adjusted R2 = 0.645, p < 0.001). Conclusions Longer-term glycemic exposure as reflected by current and mean 10-years HbA1c is a key predictor of arterial stiffness in patients with T1D, while no relationship was found with any of the short-term CGM parameters. Our findings stress the importance of early and sustained good glycemic control to prevent premature CVD in patients with T1D and suggest that HbA1c should continue to be used in the risk assessment for diabetic complications. The role of skin glycation, as a biomarker for vascular aging, in the risk assessment for CVD is an interesting avenue for further research.
Background Despite increasing use of continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion (CSII, insulin pumps) in type 1 diabetes (T1D) in pregnancy, achieving recommended pregnancy glycaemic targets (3.5–7.8 mmol/L or 63–140 mg/dL) remains challenging. Consequently, the risk of adverse pregnancy outcomes remains high. Outside pregnancy, hybrid closed-loop (HCL) insulin delivery systems have led to a paradigm shift in the management of T1D, with 12% higher time in glucose target range (TIR) compared to conventional CSII. However, most commercially available HCL systems are currently not approved for use in pregnancy. This study aims to evaluate the efficacy, safety and cost-effectiveness of the MiniMed™ 780G HCL system (Medtronic) in T1D in pregnancy. Methods In this international, open-label, randomized controlled trial (RCT), we will compare the MiniMed™ 780G HCL system to standard of care (SoC) in T1D in pregnancy. Women aged 18–45 years with T1D diagnosis of at least one year, HbA1c ≤ 86 mmol/mol (≤ 10%), and confirmed singleton pregnancy up to 11 weeks 6 days will be eligible. After providing written informed consent, all participants will wear a similar CGM system (Guardian™ 3 or Guardian™ 4 CGM) during a 10-day run-in phase. After the run-in phase, participants will be randomised 1:1 to 780G HCL (intervention) or SoC [control, continuation of current T1D treatment with multiple daily injections (MDI) or CSII and any type of CGM] stratified according to centre, baseline HbA1c (< 53 vs. ≥ 53 mmol/mol or < 7 vs. ≥ 7%), and method of insulin delivery (MDI or CSII). The primary outcome will be the time spent within the pregnancy glucose target range, as measured by the CGM at four time points in pregnancy: 14–17, 20–23, 26–29, and 33–36 weeks. Prespecified secondary outcomes will be overnight TIR, time below range (TBR: <3.5 mmol/L or < 63 mg/dL), and overnight TBR. Other outcomes will be exploratory. The planned sample size is 92 participants. The study will end after postpartum discharge from hospital. Analyses will be performed according to intention-to-treat as well as per protocol. Discussion This large RCT will evaluate a widely used commercially available HCL system in T1D in pregnancy. Recruitment began in January 2021 and was completed in October 2022. Study completion is expected in May 2023. Trial registration ClinicalTrials.gov: NCT04520971. Registration date: August 20, 2020. https://clinicaltrials.gov/ct2/show/NCT04520971
Introduction: Thyroid hormone replacement in central hypothyroidism (CHT) is more difficult than in primary hypothyroidism (PHT), putting patients at risk for inappropriate substitution. In this study, we compared dosage of thyroid hormone replacement in patients with CHT with that of patients with PHT. In addition, we explored and compared quality of life (QoL) between both groups, based on two questionnaires, the SF-36 health score and the thyroid specific ThyPRO score. Methods: This is a monocentric, cross-sectional study, performed at the Ghent University Hospital (Belgium). We included 82 patients in total, 41 patients with CHT and 41 patients with PHT. At the time of inclusion, all patients had to have a stable dose of levothyroxine over the past six months and patients with PHT needed to be euthyroid (defined as having a TSH level within the reference range, 0.2 – 4.5mU/L). All data was retrieved from medical files, questionnaires on QoL were self-administered. Results: The CHT and PHT groups were comparable regarding age and BMI. There was no significant difference between both groups regarding total daily dose of levothyroxine or daily dose of levothyroxine per kg body weight. Serum levels of fT4 and fT3 also did not differ between the two groups and both were in the normal (mid)range for the two groups. Regarding QoL, patients with CHT scored worse in terms of depressive and emotional symptoms, impaired daily and social life. Conclusion: We could demonstrate a difference in quality of life between patients with central and primary hypothyroidism. Although patients with CHT had a somewhat lower levothyroxine substitution dose than patients with PHT, this difference was also not significant and probably does not explain the difference in quality of life.
People with type 1 diabetes experience challenges in managing blood glucose around exercise. Previous studies have examined glycaemic responses to different exercise modalities but paid little attention to participants' prandial state, although this is an important consideration and will enhance our understanding of the effects of exercise in order to improve blood glucose management around activity. This review summarises available data on the glycaemic effects of postprandial exercise (i.e. exercise within 2 h after a meal) in people with type 1 diabetes. Using a search strategy on electronic databases, literature was screened until November 2022 to identify clinical trials evaluating acute (during exercise), subacute (≤2 h after exercise) and late (>2 h to ≤24 h after exercise) effects of postprandial exercise in adults with type 1 diabetes. Studies were systematically organised and assessed by exercise modality: (1) walking exercise (WALK); ( 2) continuous exercise of moderate intensity (CONT MOD); (3) continuous exercise of high intensity (CONT HIGH); and (4) interval training (intermittent high-intensity exercise [IHE] or high-intensity interval training [HIIT]). Primary outcomes were blood glucose change and hypoglycaemia occurrence during and after exercise.All study details and results per outcome were listed in an evidence table. Twenty eligible articles were included: two included WALK sessions, eight included CONT MOD, seven included CONT HIGH, three included IHE and two included HIIT. All exercise modalities caused consistent acute glycaemic declines, with the largest effect size for CONT HIGH and the smallest for HIIT, depending on the duration and intensity of the exercise bout. Pre-exercise mealtime insulin reductions created higher starting blood glucose levels, thereby protecting against hypoglycaemia, in spite of similar declines in blood glucose during activity between the different insulin reduction strategies. Nocturnal hypoglycaemia occurred after higher intensity postprandial exercise, a risk that could be diminished by a post-exercise snack with concomitant bolus insulin reduction. Research on the optimal timing of postprandial exercise is inconclusive. In summary, individuals with type 1 diabetes exercising postprandially should substantially reduce insulin with the pre-exercise meal to avoid exercise-induced hypoglycaemia, with the magnitude of the reduction depending on the exercise duration and intensity. Importantly, pre-exercise blood glucose and timing of exercise should be considered to avoid hyperglycaemia around exercise. To protect against late-onset hypoglycaemia, a post-exercise meal with insulin adjustments might be advisable, especially for exercise in the evening or with a high-intensity component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.