<div class="section abstract"><div class="htmlview paragraph">Fuel cell and battery electric powertrains are maturing zero-emission technologies expected to complement each other in the future. At present, battery electric powertrains have emerged competitive for urban light-duty transportation while fuel cell powertrains have emerged competitive in heavy-duty commercial transportation, alongside conventional internal combustion engine propulsion. This paper assesses the benefit for fuel cell powertrains in off-road vehicles, taking into account current and target industry data for powertrain components. Specific emphasis is placed on three important aspects, namely driving range, vehicle weight, and vehicle cost. A model-based design approach is then adopted to size the powertrain to meet a set of performance requirements. Owing to the high performance demands of off-road vehicles such as high gradeability and payload capacity, the paper evaluates the merits of a two-speed transmission in comparison to a single speed transmission under drive cycle and performance testing scenarios. A detailed fuel cell model is adopted and validated with real vehicle test data, also from which a highly scalable energy management system is systematically developed. This work adds to a growing industry effort towards zero-emission electrification of off-road vehicles.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.