Background Since the outbreak of COVID-19, the development of dashboards as dynamic, visual tools for communicating COVID-19 data has surged worldwide. Dashboards can inform decision-making and support behavior change. To do so, they must be actionable. The features that constitute an actionable dashboard in the context of the COVID-19 pandemic have not been rigorously assessed. Objective The aim of this study is to explore the characteristics of public web-based COVID-19 dashboards by assessing their purpose and users (“why”), content and data (“what”), and analyses and displays (“how” they communicate COVID-19 data), and ultimately to appraise the common features of highly actionable dashboards. Methods We conducted a descriptive assessment and scoring using nominal group technique with an international panel of experts (n=17) on a global sample of COVID-19 dashboards in July 2020. The sequence of steps included multimethod sampling of dashboards; development and piloting of an assessment tool; data extraction and an initial round of actionability scoring; a workshop based on a preliminary analysis of the results; and reconsideration of actionability scores followed by joint determination of common features of highly actionable dashboards. We used descriptive statistics and thematic analysis to explore the findings by research question. Results A total of 158 dashboards from 53 countries were assessed. Dashboards were predominately developed by government authorities (100/158, 63.0%) and were national (93/158, 58.9%) in scope. We found that only 20 of the 158 dashboards (12.7%) stated both their primary purpose and intended audience. Nearly all dashboards reported epidemiological indicators (155/158, 98.1%), followed by health system management indicators (85/158, 53.8%), whereas indicators on social and economic impact and behavioral insights were the least reported (7/158, 4.4% and 2/158, 1.3%, respectively). Approximately a quarter of the dashboards (39/158, 24.7%) did not report their data sources. The dashboards predominately reported time trends and disaggregated data by two geographic levels and by age and sex. The dashboards used an average of 2.2 types of displays (SD 0.86); these were mostly graphs and maps, followed by tables. To support data interpretation, color-coding was common (93/158, 89.4%), although only one-fifth of the dashboards (31/158, 19.6%) included text explaining the quality and meaning of the data. In total, 20/158 dashboards (12.7%) were appraised as highly actionable, and seven common features were identified between them. Actionable COVID-19 dashboards (1) know their audience and information needs; (2) manage the type, volume, and flow of displayed information; (3) report data sources and methods clearly; (4) link time trends to policy decisions; (5) provide data that are “close to home”; (6) break down the population into relevant subgroups; and (7) use storytelling and visual cues. Conclusions COVID-19 dashboards are diverse in the why, what, and how by which they communicate insights on the pandemic and support data-driven decision-making. To leverage their full potential, dashboard developers should consider adopting the seven actionability features identified.
ObjectiveMonitoring inequality in healthcare utilisation is essential to reduce persistent inequalities in health in lower-middle income countries. This study aimed to assess socioeconomic inequalities in the utilisation of primary care, secondary care and preventive care in Indonesia.MethodsA cross-sectional study was conducted using data from the 2014 Indonesia Family Life Survey with a total of 42 083 adult participants. Socioeconomic status (SES) was measured by educational level and income. Healthcare utilisation was measured in: (1) primary care, (2) outpatient in secondary care, (3) inpatient care and (4) cardiovascular-related preventive care. The magnitude of inequalities was measured using the relative index of inequality (RII).ResultsSmall educational inequalities were found for primary care utilisation (RII 1.13, 95% CI 1.01 to 1.26). Larger educational inequalities were found for outpatient secondary care (RII 10.35, 95% CI 8.11 to 13.22) and inpatient care (RII 2.78, 95% CI 2.32 to 3.32). The largest educational inequalities were found for preventive care, particularly regarding blood glucose tests (RII 30.31, 95% CI 26.13 to 35.15) and electrocardiography tests (RII 30.90, 95% CI 24.97 to 38.23). Compared with educational inequalities, income inequalities were larger for primary care (RII 1.68, 95% CI 1.52 to 1.85) and inpatient care (RII 3.11, 95% CI 2.63 to 3.66), but not for outpatient secondary care and preventive care.ConclusionsSocioeconomic inequalities in healthcare utilisation in Indonesia are particularly large in secondary and preventive care. Therefore, it is recommended to prioritise policies focused on improving timely, geographical and financial access to secondary and preventive care for lower SES groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.