In the present study, numerically iterative models are employed to study two processes involved in the pulsed laser deposition of an Y3Fe5O12 target. The 1D conduction heat model is used to evaluate the temperature of the target irradiated by a nano-second pulse laser, taking into account the plasma shielding effect. Further, the gas dynamics model is employed to simulate the kinetic of plasma plume expansion. The results may be important in obtaining high-quality Y3Fe5O12 thin films.
The morphology of zinc oxide (ZnO) can determine the distribution of defects in the system, which plays an important role in determining its optical and electronic properties. Here, we investigate the optical and electronic transfer properties of different ZnO surface morphologies. ZnO nanocolumnar was synthesized by direct-current (DC) sputtering followed by annealing using a ratio of T/Tm = 0.15, 0.20, and 0.25. The x-ray diffraction (XRD) results show that an increase in annealing temperature causes an increase in crystal size accompanied by a decrease in lattice strain. Furthermore, the surface morphology of the sample changed with increasing annealing temperature treatment, following the structural zone model. The optical and electronic transfer properties of the samples were investigated in three regions; region 1 (T/Tm = 0.15), region 2 (T/Tm = 0.20), and region 3 (T/Tm = 0.25) using optical modeling. The highest surface electronic transfer was noted in region 2, which is indicated by the highest surface energy loss function (SELF). This research can provide a good understanding in designing optoelectronic systems based on their morphological features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.