Objectives. Triphala is a herbal medicine that has been widely used for treating a variety of ailments. This study aims to systematically analyze the antitumor effects of Triphala on gynecological cancers. Methods. The antineoplastic activities of Triphala on gynecological cancers were analyzed using network pharmacology-based strategies. Afterward, the human ovarian cancer cell line SK-OV-3, cervical cancer cell line HeLa, and endometrial cancer cell line HEC-1-B were selected for experimetal valification. Results. Network pharmacology analysis suggested that Triphala could comprehensively intervene in proliferation and apoptosis through diverse signaling pathways, mainly including MAPK/ERK, PI3K/Akt/mTOR, and NF-κB/p53. The Cell Counting Kit 8 (CCK-8) assay illustrated that Triphala was able to inhibit cell proliferation with half inhibition concentration (IC50) values of 98.28 ± 13.71, 95.56 ± 8.94, and 101.23 ± 7.76 µg/mL against SK-OV-3, HeLa, and HEC-1-B cells, respectively. The ELISA experiment demonstrated that Triphala was capable of promoting programmed cell death, with dosage correlations. The antiproliferative and proapoptotic activities were confirmed by flow cytometric analysis using Ki67 antibody and Annexin V/propidium iodide (PI) dual staining. Western blotting revealed a decrease in expression levels of phospho-Akt, phospho-p44/42, and phospho-NF-κB p56 in cells administered Triphala, which indicated that the possible mechanism could involve downregulation of MAPK/ERK, PI3K/Akt/mTOR, and NF-κB/p53 signaling pathways, as was predicted. Conclusion. Triphala holds great promise for treating gynecological cancers. Although the favorable pharmacological properties have been preliminarily investigated in this study, further studies are still needed to uncover the sophisticated mechanism of Triphala in cancer therapy.
Objectives Triphala is an extensively prescribed traditional medicinal formula with potential therapeutic effects on various malignancies such as breast, colon, pancreas, prostate, ovarian, cervical, endometrial, and lymphatic cancer as well as melanoma. This study aimed to investigate Triphala for antitumor activities against gastric cancers. Methods In vitro tumor growth and migration of human gastric cancer cells were examined using the CCK-8 and Transwell assays, respectively. In vivo tumor progression was studied in a zebrafish xenograft model. The anticancer activity of Triphala was quantified as growth and metastasis inhibition rate. The underlying molecular mechanism was investigated by Western blotting. Results The CCK-8 and Transwell experiments indicated that Triphala significantly decreased tumor proliferation and suppressed cell migration in vitro. The zebrafish xenograft study revealed that administration of Triphala inhibited the xenograft growth and metastasis of transplanted carcinoma cells in vivo. Western blotting analysis demonstrated an inhibition of phosphorylation of EGFR, Akt, and ERK in the presence of Triphala, indicating that its antineoplastic mechanism is associated with the regulation of the EGFR/Akt/ERK signaling cascade. Conclusion Triphala is a promising antineoplastic agent for the treatment of gastric carcinomas with significant antiproliferative and antimetastatic activities.
Background. Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods. An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results. The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion. In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.