BackgroundProbiotics can be used to stimulate or regulate epithelial and immune cells of the intestinal mucosa and generate beneficial mucosal immunomodulatory effects. Beneficial effects of specific strains of probiotics have been established in the treatment and prevention of various intestinal disorders, including allergic diseases and diarrhea. However, the precise molecular mechanisms and the strain-dependent factors involved are poorly understood.Methodology/Principal FindingsIn this study, we aimed to identify gene loci in the model probiotic organism Lactobacillus plantarum WCFS1 that modulate the immune response of host dendritic cells. The amounts of IL-10 and IL-12 secreted by dendritic cells (DCs) after stimulation with 42 individual L. plantarum strains were measured and correlated with the strain-specific genomic composition using comparative genome hybridisation and the Random Forest algorithm. This in silico “gene-trait matching” approach led to the identification of eight candidate genes in the L. plantarum genome that might modulate the DC cytokine response to L. plantarum. Six of these genes were involved in bacteriocin production or secretion, one encoded a bile salt hydrolase and one encoded a transcription regulator of which the exact function is unknown. Subsequently, gene deletions mutants were constructed in L. plantarum WCFS1 and compared to the wild-type strain in DC stimulation assays. All three bacteriocin mutants as well as the transcription regulator (lp_2991) had the predicted effect on cytokine production confirming their immunomodulatory effect on the DC response to L. plantarum. Transcriptome analysis and qPCR data showed that transcript level of gtcA3, which is predicted to be involved in glycosylation of cell wall teichoic acids, was substantially increased in the lp_2991 deletion mutant (44 and 29 fold respectively).ConclusionComparative genome hybridization led to the identification of gene loci in L. plantarum WCFS1 that modulate the immune response of DCs.
Peanut allergy accounts for the majority of severe food-related allergic reactions and there is a need for new prevention and treatment strategies. Probiotics may be considered for treatment on the basis of their immunomodulating properties. Cytokine profiles of probiotic strains were determined by in vitro co-culture with human PBMCs. Three strains were selected to investigate their prophylactic potential in a peanut sensitization model by analysing peanut-specific antibodies, mast cell degranulation and ex vivo cytokine production by splenocytes. The probiotic strains induced highly variable cytokine profiles in PBMCs. L. salivarius HMI001, L. casei Shirota (LCS) and L. plantarum WCFS1 were selected for further investigation owing to their distinct cytokine patterns. Prophylactic treatment with both HMI001 and LCS attenuated the Th2 phenotype (reduced mast cell responses and ex vivo IL-4 and/or IL-5 production). In contrast, WCFS1 augmented the Th2 phenotype (increased mast cell and antibody responses and ex vivo IL-4 production). In vitro PBMC screening was useful in selecting strains with anti-inflammatory and Th1 skewing properties. In case of HMI001 (high IL-10/IL-12 ratio) and LCS (high interferon-γ and IL-12), partial protection was seen in a mouse peanut allergy model. Strikingly, certain strains may worsen the allergic reaction as shown in the case of WCFS1.
Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.