We present fluorescence decay measurements of single ZnS covered CdSe nanocrystals. It is shown that the fluorescence decay time is fluctuating during the investigation leading to a multiexponential decay even for a single nanocrystal. In combination with measurements of the fluorescence blinking behavior we find that a high fluorescence intensity is correlated with a long fluorescence decay time. This is consistent with a model of fluctuating nonradiative decay channels leading to variable dynamic quenching processes of the excited state.
Electro- and photoluminescence spectra of the CdSe∕ZnS core-shell quantum dots (QDs) covered by various organic ligands and incorporated into multilayered light-emitting diodes (LEDs) were recorded by a confocal optical microscope. The QDs were dispersed in a hole transporting material, N,N’-Diphenyl-N,N’-bis(3-methylphenyl)-1,1’-biphenyl-4,4’-diamine (TPD), to investigate the LED performance at different QD concentrations and the effect of different surface modifications on the isolated QDs. No wavelength shift was observed in the electroluminescence spectra from the QD LEDs with or without the TPD. The peak energies of the electro- and photoluminescence showed only small spectral shifts (several nanometer) for the diluted QDs and no dependence on the QD-concentration, surface ligands, or conductive polymers that were used. This suggests that the relative peak shifts are related to the different filling processes in the CdSe QDs under photo excitation and electric injection, rather than to the “chemical” effects on the surface of the CdSe∕ZnS QDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.