The aim of this study was to evaluate the efficiency of sonication in releasing protein from a widespread lipase-producing yeast, Yarrowia lipolytica KKP 379, and to examine the impact of ultrasound waves generated in a horn-type sonicator on the lipolytic activity of Y. lipolytica in the hydrolysis of p-nitrophenyl laurate. In this paper, we focused on a few parameters of ultrasound cell disruption, such as the time of sonication, acoustic power, storage time of the frozen yeast biomass used in sonication and the solvent used to suspend the yeast cells which were considered as the most important part in the process of obtaining a biocatalyst from Y. lipolytica for organic synthesis. The most effective additive in protein release proved to be 2% Tween 80; other ideal parameters of the process were ultrasonic power at 150 W for 15 min and 9 weeks of frozen biomass storage time. The sonication parameters, which were the best for protein release, did not seem to be the most effective for obtaining high lipolytic activity due to denaturation as an effect of cavitation.
This study was aimed at evaluating the capability of Yarrowia lipolytica W29 for the synthesis of lipolytic enzymes in a medium containing plant oils from non-conventional sources with some components displaying bioactivity. Oils from almond, hazelnut, and coriander seeds were obtained by using n-hexane (Soxhlet method) and a chloroform/methanol mixture of solvents (Folch method), and their effect on the growth and lipolytic activity of Y. lipolytica was compared. A comparison of these two extraction methods showed that the extraction with n-hexane was less effective regarding the oil extraction yields than the extraction conducted according to Folch’s procedure. The lipolytic activity of the studied yeast was higher in the culture media containing oils extracted with the Soxhlet method than the Folch method but it was lower compared to olive oil medium. Among all oils tested, almond oil extracted with n-hexane was the best inducer of extracellular lipases synthesized by Y. lipolytica. Its lipolytic activity achieved the maximum value of 2.33 U/mL after 48 h of culture. After 24 h of culture, it was close to the value obtained for the medium containing olive oil. Almond oil was a source of oleic and linoleic acids, which may determine differences in the lipolytic activity. The linoleic acid content in almond oil was higher than that found in other oils. When n-hexane was used for extraction, the resultant oils were characterized by lower contents of polyphenols and poorer antioxidative activity.
Lipases are enzymes that catalyse the hydrolysis of ester bonds of triglycerides ranging among biocatalysts of considerable physiological significance and industrial potential. Better understanding of the catalytic functions and achieving the possibility to control the biocatalysis process, in particular exploring some activators and inhibitors of lipases, seems to be crucial in the context of novel applications. The lipase activity is a function of interfacial composition: the enzyme can be there activated as well as denaturated or deactivated and the interface is an appropriate site for modulating lipolysis. Lipase inhibitor, interacts directly with the enzyme and inhibits lipase action. Alternatively, some compounds can postpone the lipolytic reaction via adsorption to the interphase or to the substrate molecules. The aim of this review is to summarise the current knowledge concerning human, animal and microbial lipase inhibitors, which were grouped into two categories: synthetic lipase inhibitors (including phosphonates, boronic acids and fats analogues) and natural compounds (including β-lactones and some botanical foodstuffs - plant extracts and plant metabolites, mainly polyphenols and saponins as well as peptides and some dietary fibers). The topics discussed include also inhibition issues from the viewpoint of obesity treatment. Among natural compounds able to inhibit lipase activity are β- lactones including orlistat. Orlistat is the only registered drug for obesity treatment in many countries and lipases are essential enzymes for lipid absorption - thus fat absorption or obesity can be controlled by lipase inhibition, especially pancreatic lipase which is responsible for the hydrolysis of over 80% of total dietary fats. Its effectiveness in obesity treatment was also described.
International audienceLactones are important secondary metabolites for fungi. In this chapter are presented some lactones that are important in biotechnology such as flavoring lactones or fragrance macrocyclic musk compounds, whereas others are important for quorum sensing and health (mycotoxins). Different pathways or enzymes can give rise to lactones, and the pathways going through β-oxidation and ω-oxidation and the fungal polyketide pathway (relatively similar to the fatty acid synthesis pathway) are presented as well as the activity of Baeyer–Villiger monooxygenases and lactonases and their potential use in biotechnology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.