Tocopherols and plastochromanol-8 were evaluated in seeds of Brassica napus L. during adverse conditions of storage at different temperatures (25 and 30°C) and moisture levels (10, 12.5 and 15.5%). Both temperature and moisture content of seeds had a significant effect on the hydrolysis of triacylglycerols in rapeseed oil and on the contents of tocopherols and PC-8. The biggest losses of tocopherols (a drop by 14.4% after 18 days) were recorded for seeds with a moisture content of 15.5% and stored at a temperature of 30°C. Losses of the a-T homologue were bigger than those of c-T. The loss of PC-8 ranged from 4 to 24% depending on storage conditions and it was almost two times bigger than the loss of tocopherols.
A b s t r a c t. Investigations were performed to examine the possibility of using an electronic nose to monitor development of fungal microflora during the first eighteen days of rapeseed storage. The Cyranose 320 device manufactured by Sensigent was used to analyse volatile organic compounds. Each sample of infected material was divided into three parts and the degree of spoilage was measured in three ways: analysis of colony forming units, determination of ergosterol content, and measurement of volatile organic compounds with the e-nose. Principal component analysis was performed on the generated patterns of signals and six groups of different spoilage levels were isolated. An analysis of sensorgrams for a few sensors with a strong signal for each group of rapeseed spoilage was performed. The ratio of the association time to the steady state was calculated. This ratio was different for the low level and the highest level of ergosterol and colony forming units. The results have shown that the e-nose can be a useful tool for quick estimation of the degree of rapeseed spoilage.
The effect of temperature (25 or 35 °C) and moisture content (10, 12.5, 15.5 %) on rapeseed phytosterol degradation was examined for 18 days. Statistical analysis showed that temperature, moisture and time of storage have a significant effect on phytosterol degradation. After 18 days of seed storage at a temperature of 25 and 30 °C losses of these compounds amounted to 11 and 13 % in seeds with moisture contents of 10, 12 and 16 % in seeds with a moisture content of 12.5 %, while they were 24 and 58 % in seeds with a moisture content of 15.5 %. Among all the identified sterols the greatest degradation rate was observed for stigmasterol and brassicasterol. Losses of stigmasterol and brassicasterol during storage of seeds with a 12.5 % moisture content at a temperature of 30 °C were 17 and 28 %, respectively, while in seeds with a moisture content of 15.5 % these losses increased to 73 and 63 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.