The Hedgehog (Hh) pathway is a highly conserved signaling system that plays an important role in embryonic development and tissue homeostasis through regulation of cell differentiation and proliferation, and deregulated Hh signaling has been implicated in variety of cancers. Two distinct mechanisms are responsible for inappropriate and uncontrolled Hh pathway activation in human malignancies: ligand-dependent, due to over-expression of Hh ligand, and ligand-independent, resulting from genetic mutations in pathway components such as Patched (Ptch) and Smoothened (Smo). Smo, a member of the class F G-protein coupled receptor family, is a key regulator of Hh signaling pathway, and therefore is an attractive target for pathway modulation. We have identified a potent and selective small molecule antagonist of Smo. This novel molecule (LY2940680) binds to the Smo receptor and potently inhibits Hh signaling in Daoy, a human medulloblastoma tumor cell line, and C3H10T½, a mouse mesenchymal cell line. Importantly, LY2940680 binds to and inhibits the functional activity of resistant Smo mutant (D473H) produced by treatment with GDC-0449 (a Smo antagonist from Genentech). LY2940680 also has excellent pharmacokinetic properties in rodent and non-rodent species. Treatment of Ptch+/− p53−/− transgenic mice, which spontaneously develop medulloblastoma, with oral administration of LY2940680 produced remarkable efficacy and significantly improved their survival. Magnetic resonance imaging of these mice revealed rapid kinetics of anti-tumor activity. Immunohistochemistry analysis of medulloblastoma tumors showed that LY2940680 treatment induced Caspase-3 activity and reduced proliferation. LY2940680 inhibited Hh regulated gene expression in the subcutaneous xenograft tumor stroma and produced significant anti-tumor activity. In summary, we have characterized an orally bio-available small molecule Smo antagonist that may provide therapeutic benefit to cancer patients with deregulated Hh signaling.
Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 2819. doi:10.1158/1538-7445.AM2011-2819
A systematic investigation of the structure-activity relationships of the C-3 side chain of the screening hit 1a led to the identification of the potent thrombin inhibitors 23c, 28c, and 31c. Their activities (1240, 903, and 1271 x 10(6) L/mol, respectively) represent 2200- and 2900-fold increases in potency over the starting lead 1a. This activity enhancement was accomplished with an increase of thrombin selectivity. The in vitro anticoagulant profiles of derivatives 28c and 31c were determined, and they compare favorably with the clinical agent H-R-1-[4aS, 8aS]perhydroisoquinolyl-prolyl-arginyl aldehyde (D-Piq-Pro-Arg-H; 32). The more potent members of this series have been studied in an arterial/venous shunt (AV shunt) model of thrombosis and were found to be efficacious in reducing clot formation. However, their efficacy is currently limited by their rapid and extensive distribution following administration.
The use of 5,6-bicyclic amidines as arginine surrogates in the design of a novel class of potent platelet glycoprotein IIb-IIIa receptor (GPIIb-IIIa) antagonists is described. The additional conformational restriction offered by the bicyclic nucleus results in 20-400-fold increases in potency compared to the freely flexible, acyclic benzamidine counterpart. The design, synthesis, structure-activity relationships (SAR), and in vitro activity of this novel class of GPIIb-IIIa antagonists are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.