To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.
The Nef protein is an important HIV virulence factor that promotes the degradation of host proteins to augment virus production and facilitate immune evasion. The best-characterized targets of Nef are major histocompatibility complex class I (MHC-I) and CD4, but Nef also has been reported to target several other proteins, including CD8, CD28, CD80, CD86, and CD1d. To compare and contrast the effects of Nef on each protein, we constructed a panel of chimeric proteins in which the extracellular and transmembrane regions of the MHC-I allele HLA-A2 were fused to the cytoplasmic tails of CD4, CD28, CD8, CD80, CD86, and CD1d. We found that Nef coprecipitated with and disrupted the expression of molecules with cytoplasmic tails from MHC-I HLA-A2, CD4, CD8, and CD28, but Nef did not bind to or alter the expression of molecules with cytoplasmic tails from CD80, CD86, and CD1d. In addition, we used short interfering RNA (siRNA) knockdown and coprecipitation experiments to implicate AP-1 as a cellular cofactor for Nef in the downmodulation of both CD28 and CD8. The interaction with AP-1 required for CD28 and CD8 differed from the AP-1 interaction required for MHC-I downmodulation in that it was mediated through the dileucine motif within Nef (LL 164,165 AA) and did not require the tyrosine binding pocket of the AP-1 subunit. In addition, we demonstrate a requirement for -COP as a cellular cofactor for Nef that was necessary for the degradation of targeted molecules HLA-A2, CD4, and CD8. These studies provide important new information on the similarities and differences with which Nef affects intracellular trafficking and help focus future research on the best potential pharmaceutical targets.
Nef is an HIV-encoded accessory protein that enhances pathogenicity by down-regulating major histocompatibility class I (MHC-I) expression to evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered that the plecomacrolide family of natural products restored MHC-I to the surface of Nef-expressing primary cells with variable potency. Concanamycin A (CMA) counteracted Nef at subnanomolar concentrations that did not interfere with lysosomal acidification or degradation and were nontoxic in primary cell cultures. CMA specifically reversed Nef-mediated down-regulation of MHC-I, but not CD4, and cells treated with CMA showed reduced formation of the Nef:MHC-I:AP-1 complex required for MHC-I down-regulation. CMA restored expression of diverse allotypes of MHC-I in Nef-expressing cells and inhibited Nef alleles from divergent clades of HIV and simian immunodeficiency virus, including from primary patient isolates. Lastly, we found that restoration of MHC-I in HIV-infected cells was accompanied by enhanced CTL-mediated clearance of infected cells comparable to genetic deletion of Nef. Thus, we propose CMA as a lead compound for therapeutic inhibition of Nef to enhance immune-mediated clearance of HIV-infected cells.
HIV-1-infected cells are partially resistant to anti-HIV cytotoxic T lymphocytes (CTLs) due to the effects of the HIV Nef protein on antigen presentation by major histocompatibility complex class I (MHC-I), and evidence has been accumulating that this function of Nef is important in vivo. HIV Nef disrupts the normal expression of MHC-I by stabilizing a protein-protein interaction between the clathrin adaptor protein AP-1 and the MHC-I cytoplasmic tail. There is also evidence that Nef activates a phosphatidylinositol 3 kinase (PI3K)-dependent GTPase, ADP ribosylation factor 6 (ARF-6), to stimulate MHC-I internalization. However, the relative importance of these two pathways is unclear. Here we report that a GTPase required for AP-1 activity (ARF-1) was needed for Nef to disrupt MHC-I surface levels, whereas no significant requirement for ARF-6 was observed in Nef-expressing T cell lines and in HIV-infected primary T cells. An ARF-1 inhibitor blocked the ability of Nef to recruit AP-1 to the MHC-I cytoplasmic tail, and a dominant active ARF-1 mutant stabilized the Nef-MHC-I-AP-1 complex. These data support a model in which Nef and ARF-1 stabilize an interaction between MHC-I and AP-1 to disrupt the presentation of HIV-1 epitopes to CTLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.