Relapse has emerged as the most important cause of treatment failure after allogeneic hematopoietic stem cell transplantation (HSCT). To test the hypothesis that natural killer (NK) cells can decrease the risk of leukemia relapse, we initiated a phase 1 dose-escalation study of membrane-bound interleukin 21 (mbIL21) expanded donor NK cells infused before and after haploidentical HSCT for high-risk myeloid malignancies. The goals were to determine the safety, feasibility, and maximum tolerated dose. Patients received a melphalan-based reduced-intensity conditioning regimen and posttransplant cyclophosphamide-based graft-versus-host disease (GVHD) prophylaxis. NK cells were infused on days -2, +7, and +28 posttransplant. All NK expansions achieved the required cell number, and 11 of 13 patients enrolled received all 3 planned NK-cell doses (1 × 10/kg to 1 × 10/kg per dose). No infusional reactions or dose-limiting toxicities occurred. All patients engrafted with donor cells. Seven patients (54%) developed grade 1-2 acute GVHD (aGVHD), none developed grade 3-4 aGVHD or chronic GVHD, and a low incidence of viral complications was observed. One patient died of nonrelapse mortality; 1 patient relapsed. All others were alive and in remission at last follow-up (median, 14.7 months). NK-cell reconstitution was quantitatively, phenotypically, and functionally superior compared with a similar group of patients not receiving NK cells. In conclusion, this trial demonstrated production feasibility and safety of infusing high doses of ex vivo-expanded NK cells after haploidentical HSCT without adverse effects, increased GVHD, or higher mortality, and was associated with significantly improved NK-cell number and function, lower viral infections, and low relapse rate posttransplant.
Cyclin E and its co-activator, phosphoecyclin-dependent kinase 2 (p-CDK2), regulate G 1 to S phase transition and their deregulation induces oncogenesis. Immunohistochemical assessments of these proteins in cancer have been reported but were based only on their nuclear expression. However, the oncogenic forms of cyclin E (low molecular weight cyclin E or LMW-E) in complex with CDK2 are preferentially mislocalized to the cytoplasm. Here, we used separate nuclear and cytoplasmic scoring systems for both cyclin E and p-CDK2 expression to demonstrate altered cellular accumulation of these proteins using immunohistochemical analysis. We examined the specificity of different cyclin E antibodies and evaluated their concordance between immunohistochemical and Western blot analyses in a panel of 14 breast cell lines. Nuclear versus cytoplasmic staining of cyclin E readily differentiated fulllength from LMW-E, respectively. We also evaluated the expression of cyclin E and p-CDK2 in 1676 breast carcinoma patients by immunohistochemistry. Cytoplasmic cyclin E correlated strongly with cytoplasmic p-CDK2 (P < 0.0001), high tumor grade, negative estrogen/progesterone receptor status, and human epidermal growth factor receptor 2 positivity (all P < 0.0001). In multivariable analysis, cytoplasmic cyclin E plus phosphorylated CDK2 (as one variable) predicted breast cancer recurrence-free and overall survival. These results suggest that cytoplasmic cyclin E and p-CDK2 can be readily detected with immunohistochemistry and used as clinical biomarkers for aggressive breast cancer. (Am J Pathol 2016 http://dx
Collectively, our data support an arming model of education in which enhanced glycolysis in licensed NK cells supports proliferative and cytotoxic capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.