In the last decade, the applications of nano- and micro-technology are widely used in many fields. In the modern mobile devices, such as digital cameras, there is an increased demand to achieve fast and precise positioning for some parts such as the recording sensor. Therefore, a smart material (piezoelectric) is used to achieve this requirement. This article discusses the feed-forward control for a piezoelectric actuator using differential flatness approach. The differential flatness approach is used to calculate the required voltage to control the piezoelectric actuator movement. The control voltage will be applied to the real actuator. The simulation and experimental results are compared for the actuator. The aim of this article is to verify the feed-forward control for second eigenfrequency using the differential flatness approach for the piezoelectric actuator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.