Social immunity—the collective behavioural defences against pathogens—is considered a crucial evolutionary force for the maintenance of insect societies. It has been described and investigated primarily in eusocial insects, but its role in the evolutionary trajectory from parental care to eusociality is little understood. Here, we report on the existence, plasticity, effectiveness and consequences of social pathogen defence in experimental nests of cooperatively breeding ambrosia beetles. After an Aspergillus spore buffer solution or a control buffer solution had been injected in laboratory nests, totipotent adult female workers increased their activity and hygienic behaviours like allogrooming and cannibalism. Such social immune responses had not been described for a non-eusocial, cooperatively breeding insect before. Removal of beetles from Aspergillus -treated nests in a paired experimental design revealed that the hygienic behaviours of beetles significantly reduced pathogen prevalence in the nest. Furthermore, in response to pathogen injections, female helpers delayed dispersal and thus prolonged their cooperative phase within their mother's nest. Our findings of appropriate social responses to an experimental immune challenge in a cooperatively breeding beetle corroborate the view that social immunity is not an exclusive attribute of eusocial insects, but rather a concomitant and presumably important feature in the evolutionary transitions towards complex social organization.
Delayed dispersal of sexually mature offspring is a fundamental component of cooperative breeding. In ambrosia beetles, female offspring temporarily remain in their natal nest and refrain from reproduction, instead investing in alloparental care. Previous work has demonstrated a link between helping behaviour and the increased need for pathogen defence, arising from their close association with fungal cultivars. In the ambrosia beetle Xyleborinus saxesenii, mature female offspring can effectively fight pathogen infections and manage the microbial composition within the nest by adjusting the frequency of different hygienic and nest maintenance behaviours. This suggests a potential to respond flexibly to the ecology of their nest, which calls for a better understanding of the connection between behaviour and the microbial community thriving within their nests. Here, we studied the significance of the mutualistic fungus garden composition for the beetles’ nest ecology and fitness by experimentally varying substrate quality. We found that the vertically transmitted ambrosia fungus garden is composed of at least two fungus mutualist species and a wide variety of other microbes varying in their relative abundance. This is strongly affected by the moisture content of the substrate, which in nature depends on the age and type of wood. We found that the mutualist fungi complement each other in terms of dryness-resistance, allowing the beetles to utilise a broad range of substrates over prolonged time during which the wood gradually desiccates. Under suboptimal humidity conditions, the interaction between host and multiple fungus species has important ramifications for the behaviour of philopatric helpers, including their alloparental investment, sibling cannibalism and the timing of dispersal. Rearing five generations of beetles consecutively in dry substrate resulted in transgenerational effects on philopatry and alloparental care, probably mediated through the dominance of a particular fungus species that was driven by the experimental habitat condition. Interestingly, the nests of these selection lines produced much more offspring after five generations than any first-generation nest, which may have reflected increased egg laying by non-dispersing daughters. Our study highlights the importance of considering the interactions between the microbial community and their insect hosts for understanding social evolution in cooperatively breeding beetles.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.