Elevators are among the oldest and most widespread transportation systems, yet their complexity increases rapidly to satisfy customization demands and to meet quality of service requirements. Verification and validation tasks in this context are costly, since they rely on the manual intervention of domain experts at some points of the process. This is mainly due to the difficulty to assess whether the elevators behave as expected in the different test scenarios, the so-called test oracle problem. Metamorphic testing is a thriving testing technique that alleviates the oracle problem by reasoning on the relations among multiple executions of the system under test, the so-called metamorphic relations. In this practical experience paper, we report on the application of metamorphic testing to verify an industrial elevator dispatcher. Together with domain experts from the elevation sector, we defined multiple metamorphic relations that consider domain-specific quality of service measures. Evaluation results with seeded faults show that the approach is effective at detecting faults automatically.
The software of elevators requires maintenance over several years to deal with new functionality, correction of bugs or legislation changes. To automatically validate this software, test oracles are necessary. A typical approach in industry is to use regression oracles. These oracles have to execute the test input both, in the software version under test and in a previous software version. This practice has several issues when using simulation to test elevators dispatching algorithms at system level. These issues include a long test execution time and the impossibility of re-using test oracles both at different test levels and in operation. To deal with these issues, we propose DARIO, a test oracle that relies on regression learning algorithms to predict the Qualify of Service of the system. The regression learning algorithms of this oracle are trained by using data from previously tested versions. An empirical evaluation with an industrial case study demonstrates the feasibility of using our approach in practice. A total of five regression learning algorithms were validated, showing that the regression tree algorithm performed best. For the regression tree algorithm, the accuracy when predicting verdicts by DARIO ranged between 79 to 87%.
Software systems that are embedded in autonomous Cyber-Physical Systems (CPSs) usually have a large life-cycle, both during its development and in maintenance. This software evolves during its life-cycle in order to incorporate new requirements, bug fixes, and to deal with hardware obsolescence. The current process for developing and maintaining this software is very fragmented, which makes developing new software versions and deploying them in the CPSs extremely expensive. In other domains, such as web engineering, the phases of development and operation are tightly connected, making it possible to easily perform software updates of the system, and to obtain operational data that can be analyzed by engineers at development time. However, in spite of the rise of new communication technologies (e.g., 5G) providing an opportunity to acquire Design-Operation Continuum Engineering methods in the context of CPSs, there are still many complex issues that need to be addressed, such as the ones related with hardware-software co-design. Therefore, the process of Design-Operation Continuum Engineering for CPSs requires substantial changes with respect to the current fragmented software development process. In this paper, we build a taxonomy for Design-Operation Continuum Engineering of CPSs based on case studies from two different industrial domains involving CPSs (elevation and railway). This taxonomy is later used to elicit requirements from these two case studies in order to present a blueprint on adopting Design-Operation Continuum Engineering in any organization developing CPSs.
One of the major challenges in the verification of complex industrial Cyber-Physical Systems is the difficulty of determining whether a particular system output or behaviour is correct or not, the socalled test oracle problem. Metamorphic testing alleviates the oracle problem by reasoning on the relations that are expected to hold among multiple executions of the system under test, which are known as Metamorphic Relations (MRs). However, the development of effective MRs is often challenging and requires the involvement of domain experts. In this paper, we present a case study aiming at automating this process. To this end, we implemented GAssertMRs, a tool to automatically generate MRs with genetic programming. We assess the cost-effectiveness of this tool in the context of an industrial case study from the elevation domain. Our experimental results show that in most cases GAssertMRs outperforms the other baselines, including manually generated MRs developed with the help of domain experts. We then describe the lessons learned from our experiments and we outline the future work for the adoption of this technique by industrial practitioners. CCS CONCEPTS• Computer systems organization → Embedded software; • Theory of computation → Assertions; • Software and its engineering → Software testing and debugging; • Computing methodologies → Genetic programming.
Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls made of different materials using different oil-based lubricants. The corresponding wear tracks were characterized by optical and scanning electron microscopy and confocal profilometry. Extending our previous work, we studied the admixture of the additive 2-ethylhexyl-zinc-dithiophosphate to a base oil containing only anti-oxidants and temperature stabilizers. The presence of this additive along with the variation of the chemical composition of the counterbodies allows us to explore the synergy of the additive with the laser-oxidized nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.