Abstract. High performance computing (HPC) is increasingly subjected to faulty computations. The frequency of silent data corruptions (SDCs) in particular is expected to increase in emerging machines requiring HPC applications to handle SDCs. In this paper we, propose a robust fault injector structured through an LLVM compiler pass that allows simulation of SDCs in various applications. Although fault injection locations are enumerated at compile time, their activation is purely at runtime and based on a user-provided fault distribution. The robustness of our fault injector is in the ability to augment the runtime injection logic on a per application basis. This allows tighter control on the spacial, temporal, and probability of injected faults. The usability, scalability, and robustness of our fault injection is demonstrated with injecting faults into an algebraic multigird solver.
Checkpoint restart plays an important role in high-performance computing (HPC) applications, allowing simulation runtime to extend beyond a single job allocation and facilitating recovery from hardware failure. Yet, as machines grow in size and in complexity, traditional approaches to checkpoint restart are becoming prohibitive. Current methods store a subset of the application's state and exploit the memory hierarchy in the machine. However, as the energy cost of data movement continues to dominate, further reductions in checkpoint size are needed. Lossy compression, which can significantly reduce checkpoint sizes, offers a potential to reduce computational cost in checkpoint restart. This article investigates the use of numerical properties of partial differential equation (PDE) simulations, such as bounds on the truncation error, to evaluate the feasibility of using lossy compression in checkpointing PDE simulations. Restart from a checkpoint with lossy compression is considered for a fail-stop error in two time-dependent HPC application codes: PlasComCM and Nek5000. Results show that error in application variables due to a restart from a lossy compressed checkpoint can be masked by the numerical error in the discretization, leading to increased efficiency in checkpoint restart without influencing overall accuracy in the simulation.
With ever-increasing volumes of scientific floatingpoint data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determine the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.