We injected doses of methylmercury into the air cells of eggs of 26 species of birds and examined the dose-response curves of embryo survival. For 23 species we had adequate data to calculate the median lethal concentration (LC(50)). Based on the dose-response curves and LC(50)s, we ranked species according to their sensitivity to injected methylmercury. Although the previously published embryotoxic threshold of mercury in game farm mallards (Anas platyrhynchos) has been used as a default value to protect wild species of birds, we found that, relative to other species, mallard embryos are not very sensitive to injected methylmercury; their LC(50 )was 1.79 microg/g mercury on a wet-weight basis. Other species we categorized as also exhibiting relatively low sensitivity to injected methylmercury (their LC(50)s were 1 microg/g mercury or higher) were the hooded merganser (Lophodytes cucullatus), lesser scaup (Aythya affinis), Canada goose (Branta canadensis), double-crested cormorant (Phalacrocorax auritus), and laughing gull (Larus atricilla). Species we categorized as having medium sensitivity (their LC(50)s were greater than 0.25 microg/g mercury but less than 1 microg/g mercury) were the clapper rail (Rallus longirostris), sandhill crane (Grus canadensis), ring-necked pheasant (Phasianus colchicus), chicken (Gallus gallus), common grackle (Quiscalus quiscula), tree swallow (Tachycineta bicolor), herring gull (Larus argentatus), common tern (Sterna hirundo), royal tern (Sterna maxima), Caspian tern (Sterna caspia), great egret (Ardea alba), brown pelican (Pelecanus occidentalis), and anhinga (Anhinga anhinga). Species we categorized as exhibiting high sensitivity (their LC(50)s were less than 0.25 microg/g mercury) were the American kestrel (Falco sparverius), osprey (Pandion haliaetus), white ibis (Eudocimus albus), snowy egret (Egretta thula), and tri-colored heron (Egretta tricolor). For mallards, chickens, and ring-necked pheasants (all species for which we could compare the toxicity of our injected methylmercury with that of published reports where methylmercury was fed to breeding adults and was deposited into the egg by the mother), we found the injected mercury to be more toxic than the same amount of mercury deposited naturally by the mother. The rank order of sensitivity of these same three species to methylmercury was, however, the same whether the methylmercury was injected or maternally deposited in the egg (i.e., the ring-necked pheasant was more sensitive than the chicken, which was more sensitive than the mallard). It is important to note that the dose-response curves and LC(50)s derived from our egg injections are useful for ranking the sensitivities of various species but are not identical to the LC(50)s that would be observed if the mother bird had put the same concentrations of mercury into her eggs; the LC(50)s of maternally deposited methylmercury would be higher.
Breeding pairs of mallards (Anas platyrhynchos) were fed a control diet or a diet containing 0.5 microg/g mercury (Hg) in the form of methylmercury chloride. There were no effects of Hg on adult weights and no overt signs of Hg poisoning in adults. The Hg-containing diet had no effect on fertility of eggs, but hatching success of eggs was significantly higher for females fed 0.5 microg/g Hg (71.8%) than for controls (57.5%). Survival of ducklings through 6 d of age was the same (97.8%) for controls and mallards fed 0.5 microg/g mercury. However, the mean number of ducklings produced per female was significantly higher for the pairs fed 0.5 microg/g Hg (21.4) than for controls (16.8). Although mercury in the parents' diet had no effect on mean duckling weights at hatching, ducklings from parents fed 0.5 microg/g Hg weighed significantly more (mean = 87.2 g) at 6 d of age than did control ducklings (81.0 g). The mean concentration of Hg in eggs laid by parents fed 0.5 microg/g mercury was 0.81 microg/g on a wet-weight basis. At this time, one cannot rule out the possibility that low concentrations of Hg in eggs may be beneficial, and this possibility should be considered when setting regulatory thresholds for methylmercury.
We used log‐linear hierarchical models to analyze data from the Atlantic Flyway Breeding Waterfowl Survey. The survey has been conducted by state biologists each year since 1989 in the northeastern United States from Virginia north to New Hampshire and Vermont. Although yearly population estimates from the survey are used by the United States Fish and Wildlife Service for estimating regional waterfowl population status for mallards (Anas platyrhynchos), black ducks (Anas rubripes), wood ducks (Aix sponsa), and Canada geese (Branta canadensis), they are not routinely adjusted to control for time of day effects and other survey design issues. The hierarchical model analysis permits estimation of year effects and population change while accommodating the repeated sampling of plots and controlling for time of day effects in counting. We compared population estimates from the current stratified random sample analysis to population estimates from hierarchical models with alternative model structures that describe year to year changes as random year effects, a trend with random year effects, or year effects modeled as 1‐year differences. Patterns of population change from the hierarchical model results generally were similar to the patterns described by stratified random sample estimates, but significant visibility differences occurred between twilight to midday counts in all species. Controlling for the effects of time of day resulted in larger population estimates for all species in the hierarchical model analysis relative to the stratified random sample analysis. The hierarchical models also provided a convenient means of estimating population trend as derived statistics from the analysis. We detected significant declines in mallard and American black ducks and significant increases in wood ducks and Canada geese, a trend that had not been significant for 3 of these 4 species in the prior analysis. We recommend using hierarchical models for analysis of the Atlantic Flyway Breeding Waterfowl Survey. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Attempts to artificially incubate the eggs of wild birds have failed in many respects in duplicating the success of natural incubation. As part of a larger study we had the opportunity to artificially incubate the eggs of 22 species of birds (three domestic and 19 wild species). We report the successes and failures associated with artificial incubation of these eggs. Moisture loss varied widely, not only for Orders of birds but for similar species within an Order. Overall hatching success and success through to 90% of incubation varied for different Orders and for similar species. Humidity and temperature are critical elements in the artificial incubation of wild bird eggs and must be closely monitored throughout incubation to ensure the best possible chance of hatching. Even when these elements are addressed, artificial incubation still cannot duplicate the success of incubation by the parent.
Measurements of Hg concentrations in avian eggs can be used to predict possible harm to reproduction, but it is not always possible to sample eggs. When eggs cannot be sampled, some substitute tissue, such as female blood, the diet of the breeding female, or down feathers of hatchlings, must be used. When female mallards (Anas platyrhynchos) were fed diets containing methylmercury chloride, the concentration of Hg in a sample of their blood was closely correlated with the concentration of Hg in the egg they laid the day they were bled (r2 = 0.88; p < 0.001). Even when the blood sample was taken more than two weeks after an egg was laid, there was a strong correlation between Hg concentrations in female blood and eggs (r2 = 0.67; p < 0.0002). When we plotted the dietary concentrations of Hg we fed to the egg-laying females against the concentrations of Hg in their eggs, the r2 value was 0.96 (p < 0.0001). When the concentrations of Hg in the down feathers of newly hatched ducklings were plotted against Hg in the whole ducklings, the r2 value was 0.99 (p < 0.0003). Although measuring Hg in eggs may be the most direct way of predicting possible embryotoxicity, our findings demonstrate that measuring Hg in the diet of breeding birds, in the blood of egg-laying females, or in down feathers of hatchlings all can be used to estimate what concentration of Hg may have been in the egg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.