This paper presents a novel material spectroscopy approach to facial presentation–attack–defense (PAD). Best-in-class PAD methods typically detect artifacts in the 3D space. This paper proposes similar features can be achieved in a monocular, single-frame approach by using controlled light. A mathematical model is produced to show how live faces and their spoof counterparts have unique reflectance patterns due to geometry and albedo. A rigorous dataset is collected to evaluate this proposal: 30 diverse adults and their spoofs (paper-mask, display-replay, spandex-mask and COVID mask) under varied pose, position, and lighting for 80,000 unique frames. A panel of 13 texture classifiers are then benchmarked to verify the hypothesis. The experimental results are excellent. The material spectroscopy process enables a conventional MobileNetV3 network to achieve 0.8% average-classification-error rate, outperforming the selected state-of-the-art algorithms. This demonstrates the proposed imaging methodology generates extremely robust features.
Face-swap-attacks (FSAs) are a new threat to face recognition systems. FSAs are essentially imperceptible replay-attacks using an injection device and generative networks. By placing the device between the camera and computer device, attackers can present any face as desired. This is particularly potent as it also maintains liveliness features, as it is a sophisticated alternation of a real person, and as it can go undetected by traditional anti-spoofing methods. To address FSAs, this research proposes a noise-verification framework. Even the best generative networks today leave alteration traces in the photo-response noise profile; these are detected by doing a comparison of challenge images against the camera enrollment. This research also introduces compression and sub-zone analysis for efficiency. Benchmarking with open-source tampering-detection algorithms shows the proposed compressed-PRNU verification robustly verifies facial-image authenticity while being significantly faster. This demonstrates a novel efficiency for mitigating face-swap-attacks, including denial-of-service attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.