Abstract. The element silicon (Si) is required for the growth of silicified organisms in marine environments, such as diatoms. These organisms consume vast amounts of Si together with N, P, and C, connecting the biogeochemical cycles of these elements. Thus, understanding the Si cycle in the ocean is critical for understanding wider issues such as carbon sequestration by the ocean's biological pump. In this review, we show that recent advances in process studies indicate that total Si inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. We also update the total ocean silicic acid inventory value, which is about 24 % higher than previously estimated. These changes are significant, modifying factors such as the geochemical residence time of Si, which is now about 8000 years, 2 times faster than previously assumed. In addition, we present an updated value of the global annual pelagic biogenic silica production (255 Tmol Si yr−1) based on new data from 49 field studies and 18 model outputs, and we provide a first estimate of the global annual benthic biogenic silica production due to sponges (6 Tmol Si yr−1). Given these important modifications, we hypothesize that the modern ocean Si cycle is at approximately steady state with inputs =14.8(±2.6) Tmol Si yr−1 and outputs =15.6(±2.4) Tmol Si yr−1. Potential impacts of global change on the marine Si cycle are discussed.
Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.
<p><strong>Abstract.</strong> Iceberg-hosted sediments and atmospheric dusts transport potentially bioavailable iron to the Arctic and Southern Oceans as nanoparticulate ferrihydrite (the most soluble and potentially bioavailable iron (oxyhydr)oxide mineral). A suite of more than 50 iceberg-hosted sediments contain a mean content of 0.076 wt. % Fe as nanoparticulate ferrihydrite, which produces iceberg-hosted Fe fluxes ranging from 1.4&#8211;11 and 3.2&#8211;25 Gmoles yr<sup>&#8722;1</sup> to the Arctic a nd Southern Oceans respectively. Atmospheric dust contains a mean nanoparticulate ferrihydrite Fe content of 0.038 wt. % (corresponding to a fractional solubility of ~ 1 %) and delivers much smaller Fe fluxes (0.02&#8211;0.07 Gmoles yr<sup>&#8722;1</sup> to the Arctic Ocean and 0.0&#8211;0.02 Gmoles yr<sup>&#8722;1</sup> to the Southern Ocean). New dust flux data show that most atmospheric dust is delivered to sea ice where exposure to melting/re-freezing cycles may enhance fractional solubility, and thus fluxes, by a factor of approximately 2.5. Improved estimates for these particulate sources require additional data for the sediment content of icebergs and samples of atmospheric dust delivered to the polar regions.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.